欢迎光临
我们一直在努力
广告
广告
广告
广告
广告
广告
广告
广告
广告
广告

光纤通道网络设计最佳实践: 为可靠和高性能的连接打下基础 (光纤通道网络最短帧长)

光纤通道网络设计最佳实践

光纤通道 (FC) 是一种高速、可靠的数据传输技术,广泛应用于数据中心、存储和高性能计算 (HPC) 环境中。精心设计和部署光纤通道网络至关重要,以确保可靠和高性能的连接。

光纤通道网络最短帧长

光纤通道网络最短帧长 (SFF) 是一个配置选项,指定允许在网络上传输的最小帧大小。SFF 对于优化网络性能至关重要,应根据网络特定要求进行调整。

较大的 SFF 值(例如 2048 字节)可以降低帧开销和增加吞吐量,但会增加帧传输延迟。较小的 SFF 值(例如 512 字节)会降低延迟,但会增加帧开销和降低吞吐量。

以下是确定最佳 SFF 值的一些准则:

  • 对于高吞吐量应用程序(例如视频流或大型数据传输),较大的 SFF 值(例如 2048 字节或 4096 字节)更合适。
  • 对于低延迟应用程序(例如实时事务处理或远程桌面),较小的 SFF 值(例如 512 字节或 1024 字节)更合适。
  • 如果网络同时承载高吞吐量和低延迟应用程序,则可以采用中间 SFF 值(例如 1536 字节)作为折衷方案。

其他光纤通道网络设计最佳实践

除了 SFF 之外,还有许多其他最佳实践可用于设计和部署可靠且高性能的光纤通道网络:


  • 使用高品质的光纤和布线:

    光纤通道网络依赖于高质量的光纤和布线才能实现最佳性能。使用专门为光纤通道网络设计的 TIA/EIA-606 认证光纤和电缆。

  • 精心规划拓扑结构:

    光纤通道网络的拓扑结构应经过精心规划,以优化数据流并最小化延迟。使用环形拓扑结构或交换机式拓扑结构,并根据网络要求选择适当的交换机类型。

  • 正确配置交换机:

    光纤通道交换机需要正确配置以实现最佳性能。配置参数包括流控制、分区和链路聚合。

  • 实施冗余:

    为了提高网络可用性,实施冗余措施非常重要。使用多个交换机和路径,并设置热备交换机和光纤链路。

  • 监控和管理:

    持续监控和管理光纤通道网络至关重要。使用管理工具和软件来监控性能、识别问题并预防故障。

结论

精心设计和部署光纤通道网络对于确保可靠和高性能的连接至关重要。通过优化 SFF 并遵循其他最佳实践,企业可以构建一个能够满足他们特定要求的高效、可靠且可扩展的光纤通道网络。

如果您希望深入了解光纤通道网络设计和最佳实践,请参阅以下资源:

  • Brocade 光纤通道架构设计最佳实践
  • 戴尔 PowerConnect 7048 交换机部署指南
  • 惠普企业光纤通道最佳实践指南

电力系统通信题目

一、SDH的概念SDH(Synchronous Digital Hierarchy,同步数字体系)是一种将复接、线路传输及交换功能融为一体、并由统一网管系统操作的综合信息传送网络,是美国贝尔通信技术研究所提出来的同步光网络(SONET)。

国际电话电报咨询委员会(CCITT)(现ITU-T)于1988年接受了SONET 概念并重新命名为SDH,使其成为不仅适用于光纤也适用于微波和卫星传输的通用技术体制。

它可实现网络有效管理、实时业务监控、动态网络维护、不同厂商设备间的互通等多项功能,能大大提高网络资源利用率、降低管理及维护费用、实现灵活可靠和高效的网络运行与维护,因此是当今世界信息领域在传输技术方面的发展和应用的热点,受到人们的广泛重视。

二、SDH的产生背景SDH技术的诞生有其必然性,随着通信的发展,要求传送的信息不仅是话音,还有文字、数据、图像和视频等。

加之数字通信和计算机技术的发展,在70至80年代,陆续出现了T1(DS1)/E1载波系统(1.544/2.048Mbps)、X.25帧中继、ISDN(综合业务数字网) 和FDDI(光纤分布式数据接口)等多种网络技术。

随着信息社会的到来,人们希望现代信息传输网络能快速、经济、有效地提供各种电路和业务,而上述网络技术由于其业务的单调性,扩展的复杂性,带宽的局限性,仅在原有框架内修改或完善已无济于事。

SDH就是在这种背景下发展起来的。

在各种宽带光纤接入网技术中,采用了SDH技术的接入网系统是应用最普遍的。

SDH的诞生解决了由于入户媒质的带宽限制而跟不上骨干网和用户业务需求的发展,而产生了用户与核心网之间的接入瓶颈的问题,同时提高了传输网上大量带宽的利用率。

SDH技术自从90年代引入以来,至今已经是一种成熟、标准的技术,在骨干网中被广泛采用,且价格越来越低,在接入网中应用可以将SDH技术在核心网中的巨大带宽优势和技术优势带入接入网领域,充分利用SDH同步复用、标准化的光接口、强大的网管能力、灵活网络拓扑能力和高可靠性带来好处,在接入网的建设发展中长期受益。

三、SDH的基本传输原理SDH采用的信息结构等级称为同步传送模块STM-N(Synchronous Transport,N=1,4, 16,64),最基本的模块为STM-1,四个STM-1同步复用构成STM-4,16个STM-1或四个 STM-4同步复用构成STM-16;SDH采用块状的帧结构来承载信息,每帧由纵向9行和横向 270×N列字节组成,每个字节含8bit,整个帧结构分成段开销(Section OverHead,SDH)区、STM-N净负荷区和管理单元指针(AU PTR)区三个区域,其中段开销区主要用于网络的运行、管理、维护及指配以保证信息能够正常灵活地传送,它又分为再生段开销(Rege nerator Section OverHead,RSOH)和复用段开销(Multiplex Section OverHead, MSOH);净负荷区用于存放真正用于信息业务的比特和少量的用于通道维护管理的通道开销字节;管理单元指针用来指示净负荷区内的信息首字节在STM-N帧内的准确位置以便接收时能正确分离净负荷。

SDH的帧传输时按由左到右、由上到下的顺序排成串型码流依次传输,每帧传输时间为125μs,每秒传输1/125×帧,对STM-1而言每帧字节为8bit×(9×270×1)=bit,则STM-1的传输速率为×8000=155.520Mbit/s;而STM-4的传输速率为4×155.520Mbit/s=622.080Mbit/s;STM-16的传输速率为16×155.520(或4×622.080)=2488.320Mbit/s。

SDH传输业务信号时各种业务信号要进入SDH的帧都要经过映射、定位和复用三个步骤:映射是将各种速率的信号先经过码速调整装入相应的标准容器(C),再加入通道开销 (POH)形成虚容器(VC)的过程,帧相位发生偏差称为帧偏移;定位即是将帧偏移信息收进支路单元(TU)或管理单元(AU)的过程,它通过支路单元指针(TU PTR)或管理单元指针(AU PTR)的功能来实现;复用则是将多个低价通道层信号通过码速调整使之进入高价通道或将多个高价通道层信号通过码速调整使之进入复用层的过程。

四、SDH的特点:SDH之所以能够快速发展这是与它自身的特点是分不开的,其具体特点如下:(1)SDH传输系统在国际上有统一的帧结构,数字传输标准速率和标准的光路接口,使网管系统互通,因此有很好的横向兼容性,它能与现有的PDH完全兼容,并容纳各种新的业务信号,形成了全球统一的数字传输体制标准,提高了网络的可靠性;(2)SDH接入系统的不同等级的码流在帧结构净负荷区内的排列非常有规律,而净负荷与网络是同步的,它利用软件能将高速信号一次直接分插出低速支路信号,实现了一次复用的特性,克服了PDH准同步复用方式对全部高速信号进行逐级分解然后再生复用的过程,由于大大简化了DXC,减少了背靠背的接口复用设备,改善了网络的业务传送透明性;(3)由于采用了较先进的分插复用器(ADM)、数字交叉连接(DXC)、网络的自愈功能和重组功能就显得非常强大,具有较强的生存率。

因SDH帧结构中安排了信号的5%开销比特,它的网管功能显得特别强大,并能统一形成网络管理系统,为网络的自动化、智能化、信道的利用率以及降低网络的维管费和生存能力起到了积极作用;(4)由于SDH有多种网络拓扑结构,它所组成的网络非常灵活,它能增强网监,运行管理和自动配置功能,优化了网络性能,同时也使网络运行灵活、安全、可靠,使网络的功能非常齐全和多样化;(5)SDH有传输和交换的性能,它的系列设备的构成能通过功能块的自由组合,实现了不同层次和各种拓扑结构的网络,十分灵活;(6)SDH并不专属于某种传输介质,它可用于双绞线、同轴电缆,但SDH用于传输高数据率则需用光纤。

这一特点表明,SDH既适合用作干线通道,也可作支线通道。

例如,我国的国家与省级有线电视干线网就是采用SDH,而且它也便于与光纤电缆混合网(HFC)相兼容。

(7)从OSI模型的观点来看,SDH属于其最底层的物理层,并未对其高层有严格的限制,便于在SDH上采用各种网络技术,支持ATM或IP传输;(8)SDH是严格同步的,从而保证了整个网络稳定可靠,误码少,且便于复用和调整;(9)标准的开放型光接口可以在基本光缆段上实现横向兼容,降低了联网成本。

五、SDH的应用由于以上所述的SDH的众多特性,使其在广域网领域和专用网领域得到了巨大的发展。

电信、联通、广电等电信运营商都已经大规模建设了基于SDH的骨干光传输网络。

利用大容量的SDH环路承载IP业务、ATM业务或直接以租用电路的方式出租给企、事业单位。

而一些大型的专用网络也采用了SDH技术,架设系统内部的SDH光环路,以承载各种业务。

比如电力系统,就利用SDH环路承载内部的数据、远控、视频、语音等业务。

而对于组网更加迫切、而又没有可能架设专用SDH环路的单位,很多都采用了租用电信运营商电路的方式。

由于SDH基于物理层的特点,单位可在租用电路上承载各种业务而不受传输的限制。

承载方式有很多种,可以是利用基于TDM技术的综合复用设备实现多业务的复用,也可以利用基于IP的设备实现多业务的分组交换。

SDH技术可真正实现租用电路的带宽保证,安全性方面也优于VPN等方式。

在政府机关和对安全性非常注重的企业,SDH租用线路得到了广泛的应用。

一般来说,SDH可提供E1、E3、STM-1或STM-4等接口,完全可以满足各种带宽要求。

同时在价格方面,也已经为大部分单位所接受。

六、SDH的发展趋势SDH作为新一代理想的传输体系,具有路由自动选择能力,上下电路方便,维护、控制、管理功能强,标准统一,便于传输更高速率的业务等优点,能很好地适应通信网飞速发展的需要。

迄今,SDH得到了空前的应用与发展。

在标准化方面,已建立和即将建立的一系列建议已基本上覆盖了SDH的方方面面。

在干线网和长途网、中继网、接入网中它开始广泛应用。

且在光纤通信、微波通信、卫星通信中也积极地开展研究与应用。

近些年,点播电视、多媒体业务和其他宽带业务如雨后春笋般纷纷出现,为SDH应用在接入网中提供了广阔的空间。

SDH技术应用于接入网的好处是:1)对于要求高可靠、高质量业务的大型企事业用户,SDH可以提供较为理想的网络性能和业务可靠性。

2)可以将网管范围扩展至用户端,简化维护工作。

3)利用SDH固有灵活性,可使网络运营者更快、更有效地提供用户所需的长期和短期业务需求。

可以预计SDH技术将不断发展。

随着网络的发展,它将进一步为终端用户提供宽带服务,在迎接ATM、CATV、多媒体、因特网、全光网络带来的机会和提出的挑战中,将得到更加广泛的应用。

综上所述,SDH以其明显的优越性已成为传输网发展的主流。

SDH技术与一些先进技术相结合,如光波分复用(WDM)、ATM技术、Internet技术(IP over SDH)等,使SDH网络的作用越来越大。

SDH已被各国列入21世纪高速通信网的应用项目,是电信界公认的数字传输网的发展方向,具有远大的商用前景。

PDHPDH在数字通信系统中,传送的信号都是数字化的脉冲序列。

这些数字信号流在数字交换设备之间传输时,其速率必须完全保持一致,才能保证信息传送的准确无误,这就叫做“同步”。

在数字传输系统中,有两种数字传输系列,一种叫“准同步数字系列”(Plesiochronous Digital Hierarchy),简称PDH;另一种叫“同步数字系列”(Synchronous Digital Hierarchy),简称SDH。

采用准同步数字系列(PDH)的系统,是在数字通信网的每个节点上都分别设置高精度的时钟,这些时钟的信号都具有统一的标准速率。

尽管每个时钟的精度都很高,但总还是有一些微小的差别。

为了保证通信的质量,要求这些时钟的差别不能超过规定的范围。

因此,这种同步方式严格来说不是真正的同步,所以叫做“准同步”。

在以往的电信网中,多使用PDH设备。

这种系列对传统的点到点通信有较好的适应性。

而随着数字通信的迅速发展,点到点的直接传输越来越少,而大部分数字传输都要经过转接,因而PDH系列便不能适合现代电信业务开发的需要,以及现代化电信网管理的需要。

SDH就是适应这种新的需要而出现的传输体系。

最早提出SDH概念的是美国贝尔通信研究所,称为光同步网络(SONET)。

它是高速、大容量光纤传输技术和高度灵活、又便于管理控制的智能网技术的有机结合。

最初的目的是在光路上实现标准化,便于不同厂家的产品能在光路上互通,从而提高网络的灵活性。

1988年,国际电报电话咨询委员会(CCITT)接受了SONET的概念,重新命名为“同步数字系列(SDH)”,使它不仅适用于光纤,也适用于微波和卫星传输的技术体制,并且使其网络管理功能大大增强。

SDH技术与PDH技术相比,有如下明显优点:1、统一的比特率,统一的接口标准,为不同厂家设备间的互联提供了可能。

附图是SDH和PDH在复用等级及标准上的比较。

2、网络管理能力大大加强。

3、提出了自愈网的新概念。

用SDH设备组成的带有自愈保护能力的环网形式,可以在传输媒体主信号被切断时,自动通过自愈网恢复正常通信。

4、采用字节复接技术,使网络中上下支路信号变得十分简单。

由于SDH具有上述显著优点,它将成为实现信息高速公路的基础技术之一。

但是在与信息高速公路相连接的支路和叉路上,PDH设备仍将有用武之地。

简答题1.简述当前广电城域网的接入网双向化改造有哪三种主流接入方案,并比较其优劣

三种主流接入方案:1、 EOC;2、 CMTS;3、LAN

重点:


在双向改造中,广电当前面临着最重要的任务是加快广电网络数字化升级改造,在选择双向改造的技术中,对于广电网络接入运营商来说,需要做的是在众多双向网络改造方案中摸索出一条适合自己的道路。(适合的才是最好的)


用一句话来总结广电双向改造这三类主流接入技术:EOC需要标准化,CMTS需要廉价一些,LAN需要接入率。

具体可以看:

所谓“三网融合”,就是指电信网、有线电视网和计算机通信网的相互渗透、互相兼容、并逐步整合成为全世界统一的信息通信网络。

“三网融合”是为了实现网络资源的共享,避免低水平的重复建设,形成适应性广、容易维护、费用低的高速宽带的多媒体基础平台。

其表现为技术上趋向一致,网络层上可以实现互联互通,形成无缝覆盖,业务层上互相渗透和交叉,应用层上趋向使用统一的IP协议,在经营上互相竞争、互相合作,朝着向人类提供多样化、多媒体化、个性化服务的同一目标逐渐交汇在一起,行业管制和政策方面也逐渐趋向统一。

随着三网融合的启动,广电当前面临着最重要的任务是加快有线电视网络数字化升级改造,加快建设下一代广播电视网,在这一过程中广电网络需要大量采用双向改造的技术,从而确保广电在三网融合竞争的中取得优势。

意义

它不仅是将现有网络资源有效整合、互联互通,而且会形成新的服务和运营机制,并有利于信息产业结构的优化,以及政策法规的相应变革。

融合以后,不仅信息传播、内容和通信服务的方式会发生很大变化,企业应用、个人信息消费的具体形态也将会有质的变化。

三网融合将会从根本上改变我国文化信息资源保存、管理、传播、使用的传统方式和手段,为知识创新和两个文明建设营造一个汲取文化信息的良好环境。

从国务院推出的三网融合政策来看:2013年至2015年,将总结推广试点经验,全面实现三网融合发展,普及应用融合业务,基本形成适度竞争的网络产业格局。

2年以后,根据国务院试点的政策三网融合将会在全国全面地推广开来,对于广电网络数字化升级改造的来说,时间将会是多么的紧张。

目前,从我国广电网络的整体来看,其网络仍然存在着大量的HFC网络,而且大多数网络都没有完成双向改造,这样的网络仅能满足基本广播电视节目的传送,既不能承载多媒体交互业务,也不能有效实现网络、业务和用户管理。

所以,广电广电当前面临着最重要的任务是首先解决把HFC网络从单向网络改变为双向网络。

HFC是一种经济实用的综合数字服务宽带网接入技术 有线电视网目前在全世界已有超过9.4亿的用户,我国有线电视网自90年代初发展至今,全国覆盖面已达50%,电视家庭用户数有8000多万,成为世界上第一大有线电视网。

随着计算机技术、通信技术、网络技术、有线电视技术及多媒体技术的飞速发展,尤其在Internet的推动下,用户对信息交换和网络传输都提出了新的要求,希望融合CATV网络、计算机网络和电信网为一体的呼声越来越高。

利用HFC网络结构,建立一种经济实用的宽带综合信息服务网的方案也由此而生。

这对于广电在三网融合的竞争中有利于提升广电自身的网络价值、提高竞争力、提高服务质量、提高收入。

网络改造的成效也体现在网络社会效益和经济效益的提高上。

改造网络的另一目的是为了应对日益激烈甚至是残酷的竞争:避免用户流失、提升多业务、全业务服务能力,从而提高网络服务的社会和经济效益。

那么在当前广电网络的双向改造中,广电部门和大多数商家习惯于涉足哪几类双向改造的主流接入技术呢?

1.1、 EOC的概念

有源EOC

现在涌现出很多的技术和解决方案,将以太网络信号经过调制解调等复杂处理后通过同轴电缆传输。

尽管有人也称之为“Ethernetover Coax”,但是与真正的EoC(基带EoC/无源EoC)有非常大的差别,同轴电缆上传输的信号不再保持以太网络信号的帧格式,严格从技术的角度来说是不可称之为“EoC”的。

这类技术主要有以下几种:HomePNAover Coax、HomePlug BPL over Coax、HomePlugAV over Coax、WiFi over Coax、MoCA – Multimediaover Coax Alliance,我们暂且总称之“有源EoC”或“调制EoC”。

HomePNA、HomePlug BPL、HomePlugAV和WiFi(Wireless LAN,Wireless Fidelity)都是目前比较成熟的家庭联网技术,他们的发展均有数年的历史,MoCA则是Multimedia over Coax Alliance推出的基于同轴电缆的联网技术,是四种技术中最年轻的。

HiNOC是最近中国市场新出现的一种标准EOC技术,也是专门针对同轴电缆的技术,但目前尚无商业芯片。

无源EoC

无源EoC (Ethernetover Coax)技术基于IEEE 802.3 相关的一系列协议,也就是把以太网信号在同轴电缆上传输的一种传输技术。

原有以太网络信号的帧格式和MAC 层都没有改变,只是将从差分平衡信号(双绞线媒介)转换成非平衡信号(同轴电缆媒介)。

其最大的特点是客户端是无源器件。

基带同轴传输系统占用0-65MHz频段为用户提供了10M的带宽。

利用高低通滤波方式全部采用无源器件在同轴上实现数据和有线电视信号的传输,系统需要将原来的平衡方式传输的以太网信号变成不平衡方式传输,还要将以太网收、发信号合成一路信号,并完成100欧/75欧阻抗变换。

基带EOC技术是将以太网数据信号IP DATA和有线电视信号TVRF采用频分复用技术,使这两个信号在同一根同轴电缆里共缆传输的技术。

根据我国的有线电视网络频率老国标分割的标准,将IP DATA信号在35MHz 以下频段传输,TV RF 信号在48MHz 以上频带传输,可以实现两个信号的共缆传输,而互不影响,或者根据新国标65/87的分割点,EOC内置滤波器易于批量生产。

在楼宇内利用HFC网络入户的同轴电缆将IP DATA 和 TV RF 混合信号直接传送至用户端,再在用户端实现混合信号的无源分离。

无源EOC需要将以太信号和86MHz以上的CATV信号通过双工滤波器合在一起,需要双工滤波器具有高隔离度、高回波损耗、尽可能低的插入损耗,才可以有效抑制以太网产生的杂散信号。

同时滤波器会产生相位非线性,需要对群时延进行必须的均衡。

因此对信号指标和产品工艺要求非常高,否则容易引起信号不通畅。

因为无源EOC的能量主要集中在0到20MHz,而分支分配器的带宽一般为5到1000MHz,因此无源EOC无法通过分支分配器。

EoC(Ethernet over Coax)是用于在同轴电缆上传输以太网数据信号的一种技术,主要将机房传送至小区或大楼的宽带数据信号通过电缆向用户传输,满足用户端多业务开展带来的高带宽需求。

据DVBCN了解,EoC可以根据数据信号分为基带和调制两种传输方式,分别是基带EoC和调制EoC。

基带EoC一般为无源设备,基于IEEE 802.3相关的一系列协议,它将以太数据信号和有线电视信号采用频分复用技术,使这两个信号在同一根同轴电缆里共缆传输。

它适用于集中分配的小区,一般情况下数据信号必须到楼道。

因此基带EoC技术无法适用于网络中的普遍存在的树型网络。

调制EoC利用正交频分复用(OFDM)等技术在头端把以太网信号调制到某个频段上,然后再耦合到同轴电缆上传输,在用户端通过类似于CM的设备终端对调制在同轴电缆上的信号进行解调处理恢复成基带信号通过以太网接口向用户提供服务,同时,也将用户的回传信号进行调制加载到电缆网上传输到头端,即实现了通过同轴电缆传输以太网信号的过程。

由于采用了先进高效的调制方式以及错误校验技术,物理层速率远远超出无源EoC能够提供的带宽,对未来用户高带宽的接入需求将提供有力的支持。

调制EoC系统能克服基带EoC的缺点,具有传输距离远,能跨越放大器、分支分配器,较高带宽,支持QoS,支持集中网管等优点。

调制EoC又可细分出很多技术,如MoCA、HomePNA、HomePlug、Wi-Fi等。

1.2、 EOC标准尚未确立

EoC系统作为光纤到小区(FTTC)或光纤到楼栋(FTTB)或光纤到户(FTTX)的最后一段电缆传输技术,可将光纤收发器、PON的终端ONU作为上联汇聚设备。

从组网方式来看,类似于CMTS在有线电视网络中的应用,只是将CMTS头端设备下降至小区以下使用,以符合“光进铜退”的网络发展趋势。

而且从经济性看,调制EoC技术的价格比CMTS技术要低得多。

但是,目前EoC存在的一个问题就是它的技术尚在发展之中,多种技术并存竞争市场的局面尚有时日,价格仍然是比较高,究竟何种技术领先需要在实践中进行判断。

在DVBCN记者看来:基带EOC,只能用在集中分配网上,4\\2线转换电路在空载时,交换机就会环回死机,而留给网卡的富余电平只有几个 DB;调制类EOC,技术成熟度低,市场极其混乱。

低频调制类的缺点是受噪声影响大。

高频调制类的缺点是传输损耗大,虽然灵敏度高,但电平太小时信噪比差,吞吐率会下降。

另外由于采用带宽共享机制,故不适宜开展IPTV之类的高带宽业务

1.3、EOC的应用还存在问题

在EOC的应用中,广电专家余少波博士在回复DVBCN记者时,他认为目前在国内的EOC应用中还存在着一些问题:

其一、许多的EOC应用场景,或者是用于宽带上网,或是视频采用IPQAM的方式来传输,因此对EOC的延迟、抖动没有要求。

所以,现在的应用是不能完全反映我们在以后的NGB中对EOC的需求的。

其二、对EOC的应用评价,不能仅仅从数量上来评判。

而是要从实际的应用场景上来评判。

我们的应用场景是什么?我们有什么杨的需求?这些,应该像HINOC标准的建立一样,先要建立一个模型,然后来进行评判。

建议科技司或规划院找一些合适的人来参与模型的建立。

没有需求就没有评判的标准,没有模型就没有进行评判的根据。

没有评判的体系就没有正确的评判。

其三、EOC的情况调查和评估,需要模型。

建立实际的测试规范或是确定实际的指标,也是需要模型的。

有了NGB我们知道需要什么样的带宽了,20M===40M。

那么,要传输视频,我们需要什么样的延迟和抖动?所以,模型的建立是以后建立测试规范的关键。

是进行正确评判的基础。

1.4、EOC+EPON技术方案的应用

目前,双向网络改造的主流方案有两种,一种是基于HFC网络的双向改造方案(CM方案),另一种是近两年提出的一种新方案,即EPON到楼+EoC技术方案。

三网融合,随着广电双向网络改造的深入,据DVBCN了解,目前业界中的大多数广电运营商都比较推崇于EPON+EOC技术解决方案。

从双向改造的投资成本上来看:武汉长光胡保民博士向DVBCN记者表示,选用EPON+EOC作为双向改造时,该技术在到户带宽、户均覆盖成本等方面,相比CMTS和EPON+LAN,EPON+EoC(EoC以HomePlug AV为例)均具有一定优势。

比如说:30%接入率2M接入带宽情况下CMTS户均覆盖成本需要911元、EPON+LAN需要128元、EPON+EoC只需54元;10%接入率1M接入带宽情况下CMTS户均覆盖成本需要161元、EPON+LAN需要128元、EPON+EoC只需29元。

从双向改造的速度和难度上来看:胡保民博士认为,在EPON+EoC在双向网络改造中,使用该技术改造难度小、速度快,同时户均覆盖成本低;而“CMTS技术成熟但带宽成本高;EPON+LAN面临全网改造难度大、低接入率时覆盖成本高、楼道交换机管理等众多问题。

从双向改造的有效利用资源来看:阿尔卡特朗讯公司在接受DVCBN的采访时认为,在三网融合向NGB演进过程中可采用EPON+EOC解决方案,可以有效利用广电运营商丰富的HFC资源,减少网络改造的投资,实现视频、数据和话音的高效综合承载。

EPON+EOC方案采用的 HomePlug AV/BPL和HomePNA等主流技术也都获得了广泛的应用。

2.1、CMTS的概念

CMTS(Cable ModemTerminal Systems),CMTS是管理控制Cable Modem的设备,其配置可通过Consol接口或以太网接口完成。

其配置内容主要有:下行频率、下行调制方式、下行电平等。

下行频率在指定的频率范围内可以任意设定,但为了不干扰其它频道的信号,应参照有线电视的频道划分表选定在规定的频点上。

调制方式的选择应考虑信道的传输质量。

此外,还必须设置DHCP、TFTP服务器的IP地址,CMTS的IP地址等。

上述设置完成后,如果中间线路无故障,信号电平的衰减符合要求,则启动DHCP、TFTP服务器,就可在前端和Cable Modem间建立正常的通信通道。

目前,虽然CMTS接入技术比较成熟,但是随着EPON+EOC技术解决方案的出现,广电部门和设备商开始慢慢倾向“EPON+EOC”的技术路线,主要原因是:①EOC 每户成本已经低于Cable Modem,得益于光通设备的快速降价;②技术优势明显,干扰小,寿命长,运维成本同样低;③带宽体验较好;④安全性高。

2.2、CMTS的优势与缺陷

目前,双向网络改造的主流方案有两种,除了近两年提出的一种新方案(EPON到楼+EoC技术方案)以外,另一种便是基于HFC网络的双向改造方案(CM方案)。

基于HFC网络的双向改造方案(CMTS+CM方案)的最大优势:

首先,高度集中,除了分前端(前端)的CMTS和用户端的CM以外,没有其他有源的数据网设备,因此管理、维护比较方便。

CMTS的另一大优势是时间成本低:一旦部署了CMTS,就像电信ADSL一样可以随时开通用户,这对竞争是非常重要的。

其次,覆盖范围大,单从宽带接入业务考虑,CMTS可以分期投资,逐步扩充。

另外,CM的标准化、成熟度也是其它方案难以比拟的。

DOCSIS标准的带宽利用率最高,能达到的吞吐量也最高。

DOCSIS3.0采用频道捆绑技术可以大大提高速率,甚至达到下行1Gbps、上行500Mbps的水平,这是目前所有其它铜缆接入技术无法达到的。

在同轴电缆占HFC网络中较大比例的时代,CMTS几乎是基于同轴电缆的唯一可选的双向改造方案。

基于HFC网络的双向改造方案(CMTS+CM方案)的最大缺陷:

第一,CMTS单位带宽成本太高是这个方案的致命弱点。

短期内如果只作宽带接入和上网,每个信道实际接入服务200户以下(覆盖2000户以下),由于共享和非同时应用,上网速率还可以达到200k-2M。

如果作流媒体服务(IPTV、VOD等现在流行的新业务),每个用户都需要长时间占用网络、大流量吞吐数据,每个信道只能服务40户以下,成本就太高了。

除非CMTS能够降价90%以上才可能是一个性价比较高的方案。

第二,反向噪声汇聚也是一个工程和维护的难题,HFC网络反向设计和施工工艺的控制在我国大部分地区(特别是中、小城市)实施也还存在一定难度,而维护和运行故障排除需要的技术支撑在我国大部分地区短期内也难妥善解决。

2.3、双向网改依旧以CMTS为主,EPON+EOC应用逐渐扩大

截止到2010年6月底,根据《中国数字电视运营季度监测报告》显示,我国有线双向网络覆盖用户已超过4600万户。

双线网络改造将是下一阶段我国数字化发展的重要任务之一。

格兰研究向DVBCN记者表示,在当前的广电网络的双向改造中,有不足20%的有线运营商完成整个网络内用户的双向网改,有35.3%的有线运营商基本完成市区网络改造,如江苏省的南京、苏州、哈尔滨等地区;有27.1%的有线运营商正在推进本地区网络改造,如湖南省网、湖北省网、安徽省网、吉林省网、沈阳等地区积极推进双线网络改造,推进双向互动业务发展,提高自身在三网融合中的竞争优势。

有线运营商双向网络改造任务依然艰巨。

同时,从格兰研究向DVBCN记者所提供的资料显示,目前有线运营商网络改造技术以CMTS和EPON+EOC为主。

随着EPON+EOC技术的逐渐完善,设备成本逐渐下降,目前越来越多的有线运营商选用EPON+EOC技术方案,可以有效地减少双向网改资金投入,减少部分资金压力。

从目前形势来看,以及武汉长光、阿尔卡特朗讯和格兰研究等公司都向DVBCN记者表示,“EPON+EOC”将是今后有线运营商双向网络改造的主选技术方案。

3.1、LAN的概念

局域网(Local Area Network)是在一个局部的地理范围内(如一个学校、工厂和机关内),将各种计算机。

外部设备和数据库等互相联接起来组成的计算机通信网。

它可以通过数据通信网或专用数据电路,与远方的局域网、数据库或处理中心相连接,构成一个大范围的信息处理系统。

简称LAN,是指在某一区域内由多台计算机互联成的计算机组。

“某一区域”指的是同一办公室、同一建筑物、同一公司和同一学校等,一般是方圆几千米以内。

局域网可以实现文件管理、应用软件共享、打印机共享、扫描仪共享、工作组内的日程安排、电子邮件和传真通信服务等功能。

局域网是封闭型的,可以由办公室内的两台计算机组成,也可以由一个公司内的上千台计算机组成。

局域网(LAN)是在一个小区域范围内对各种数据通信设备提供了互连的信息网,其中决定局域网特性的主要技术:一是用以传输数据的传输媒体;二是用以连接各种设备的拓扑结构;三是用以共享资源的媒体访问控制方法。

而局域网(LAN)技术主要包括以太网系列技术、令牌网络技术等技术,以太网技术具有成本低、技术简单、使用管理方便等特点,以太网系列技术主要包括以太网、快速以太网、千兆以太网和10G以太网等技术。

在该类技术中,用于双向网络的接入采用五类线进行入户改造,完成双向数据业务的接入功能,有线电视网络仍然采用HFC网络实现。

五类线接入方式具有接入带宽高,可扩充,可以承载多业务运营等特点。

在后期维护中,五类线入户方式符合综合布线系统要求。

用户间相互影响小,维护与故障处理方便。

五类线接入方式存在着五类线需重新入户施工,施工量和施工难度较大,因此五类线接入方式主要适用于新建住宅预埋线路或办公楼等网络用户密集的地区。

3.2、LAN 的优点与缺点

由于LAN是一个局域网,其它的优点就是在双向改造完成以后,选用了EPON到楼+EoC技术方案的单位用户独占线路资源,不存在相互干扰的问题,开展点播业务不需要新增用户的终端投入,并且可以有效节省开通成本。

而在存带宽规划上,EPON+LAN技术方案1000M到小区,100M到楼道,10M到户,可满足用户高带宽的需求和未来多业务接人的需要。

但是LAN 同时也有一个很大的缺点:不能在楼外布网线,易遭雷击。

如果报装率太低,满铺的投资太大,利用率太低,投资收回的周期较长。

除此以外,DVBCN记者认为,LAN只有在新建小区建设,在旧小区内建设难度大,而且不符合升级需尽量保护现有投资的思想。

事实上,LAN 属于室内型产品,组建简单,但是各个方面的要求较高,且维护费用高的特点。

3.3 EPON+LAN技术方案的应用

对于EPON+LAN技术方案,余少波博士认为EPON+LAN实际上是两张网络,对于没有自己的网络的长城宽带等是合适的。

不把 EPON+LAN的方式理解为比较便宜,实际上是一种误解。

因为在进行全业务和精细管理的情况下,需要QINQ,如果采用QINQ的模式,要求楼道交换机具有QINQ的功能,这就不是简单的HUB就可以了的,需要真正的交换机,价格在每个端口在100元左右。

举个例子来说,如果要覆盖64个用户,就需要大约6400元左右,比一般的EOC局端要贵4倍左右。

在加上其它的安装费用,实际上,成本比EPON+EOC方式要贵。

而武汉长光胡保民博士在接受DVBCN记者的采访时认为,尽管按照现有的测算EPON+LAN的成本可能比EPON+EOC要便宜,但是需要比较综合成本,一般的计算方法EPON+LAN都没有计算用户家里的家庭网关或者交换机,而随着EOC标准的统一,未来EPON+EoC的市场可能更有竞争力的。

不过在商业区中的应用,胡保民博士又认为,在商务楼、宾馆等细分市场中,采用EPON+LAN的模式也是可行的。

小结

在三网融合下,广电当前面临着最重要的任务是加快广电网络数字化升级改造,在选择双向改造的技术中,对于广电网络接入运营商来说,需要做的是在众多双向网络改造方案中摸索出一条适合自己的道路;用一句话来总结广电双向改造这三类主流接入技术:EOC需要标准化,CMTS需要廉价一些,LAN需要接入率。

给我解释: SDH(Synchronous Digital Hierarchy)同步数字系列.

SDH与ATM 同步数字体系(SDH)是一种光纤通信系统中的数字通信体系,又称同步数字复接体制。

它是一套新的国际标准。

SDH既是一个组网原则,又是一套复用的方法。

在SDH基础上,可以建成一个灵活,可靠,能够进行遥控管理的全国电信传输网以至全世界的电信传输网。

这个传输网可以很方便地扩展新业务,还可以使不同厂家生产的设备进行互通使用。

光纤具有高带宽、传输距离远等优点,光纤已成为宽带综合数字业务网的主要物理连接媒介,不过,如果仅凭单纯的光缆连接,并不能构成担负各种复杂应用的传输网。

骨干传输需要由复杂的传输协议来支撑,并借助光纤作为物理媒介,80年代美国贝尔通讯研究所首先提出了SONET(Synchronous OpticalNetworking同步光纤网络)的概念。

CCITT采纳并修改和扩充了这一概念。

将其命名为SDH(Synchronous Digital Hierarchy 同步数字系列)。

SDH网是对原有PDH(PlesiochronousDigitalHierarchy准同步系列)网的一次革命。

过去的光纤通信系统没有一套国际上统一的标准,都是由各个国家各自开发出不同的系统,称准同步数字体系PDH。

因此,各国所采用的速率(传输信号的速度)、线路码型、接口标准、结构都不相同。

无法在光路上实现不同厂家设备的互通和直接联网,造成许多技术上的困难和费用的增加。

SDH是为了克服PDH的缺点而产生的,是有一个明确的目标再定规范然后研制设备。

这样就可以按最完善的方式设定未来通信网要求的系统和设备。

SDH是一项成熟的传输技术。

使用开放技术的第三代SDH网络现在已经建成。

SDH节点类型有ADM(上/下复用器)、DXC(数字交叉连接)、TM(终端复用器)和(中继器),使用这些节点设备可建成链状、星形、环行及网状网络。

SDH有以下主要的特点:(1)在全世界范围统一了体系中各级信号的传输速率。

SDH定义的速率为N*155.520Mb/s(Mb/s表示每秒钟传输的兆比特数,比特是量度信息的单位,N=1,2,3,……)。

(2)简化了复接和分接技术。

过去PDH对于较低速率(比如容量为30路的传输速率2Mb/s)要在容量为1920路的传输速率140Mb/s系统中复接或分接的话,就必须先通过8Mb/s复接,34Mb/s复接,然后复接入140Mb/s,十分麻烦。

SDH可以把2Mb/s直接复接入(或分接)140Mb/s,而不必逐级进行。

简化了复接、分接技术,上下电路方便,大大提高了通信网的灵活性和可靠性。

(3)确定了全世界通用的光接口标准。

这样就使得不同厂家生产的设备可以按统一接口标准互通使用,节省网络的成本。

(4)在传输的码型中,安排了较多的富余比特,供作网路中管理控制之用,使网路中检测故障,监测传输性能等能力大大加强。

SDH是国际电信联盟CCITT于1988年正式推荐的,并称为同步数字体系。

SDH是一个十分重要的标准,它不仅适用于光纤通信,原则上也适用于微波和卫星通信。

一个典型的SDH网络管理系统有3层,依次为网络管理层(又称网络控制层NCL)、网元管理层(EM)和网元层(NE)如图:网络管理系统网元管理系统A 网元管理系统B 网元管理系统C NE NENE NE NENE NENENE同步数字体系信号的最基本也是最重要的模块信号是STM-1,其速率为155。

520Mb/S。

4个STM-1构成STM-4,其速率为622。

080Mb/S。

4个STM-4构成STM-16,其速率为2488。

320Mb/S。

即STM-N是一种以字节结构为基础的矩形块状帧结构,其结构安排如图:9×270×N字节传输方向STM-N 净负荷(含POH) 1SOHAU PTR SOH 99×N 261×N270×N列其中,SOH为段开销,AU PTR为管理单元指针,POH为通道开销。

随着SDH技术引入,传输系统不仅具有提供信号传播的物理过程的功能,而且提供对信号的处理、监控等过程的功能。

SDH 通过多种容器C和虚容器VC以及级联的复帧结构的定义,使其可支持多种电路层的业务,如各种速率的异步数字系列、DQDB、FDDI、ATM等,以及将来可能出现的各种新业务。

段开销中大量的备用通道增强了SDH网的可扩展性。

通过软件控制使原来PDH中人工更改配线的方法实现了交叉连接和分插复用连接,提供了灵活的上/下电路的能力,并使网络拓扑动态可变,增强了网络适应业务发展的灵活性和安全性,可在更大几何范围内实现电路的保护、高度和通信能力的优化利用,从而为增强组网能力奠定基础,只需几秒就可以重新组网。

特别是SDH自愈环,可以在电路出现故障后,几十毫秒内迅速恢复。

SDH的这些优势使它成为宽带业务数字网的基础传输网。

近年来,2.4Gb/s SDH系统已走向实用。

10GB/S系统已基本完成实验室工作。

与SDH网络管理有关的主要操作运行接口为Q接口(含Q或Q)和F接口。

Q接口应符合ITU-T建议Q.811和Q.812中相关协议栈的规定。

ITU-T并不强制协议栈的选择,但实际适用SDH网的主要协议栈是CON S1、CLN S1和CLN S2。

通常,NE经LCN连至局内NE管理系统时所用的Q接口,采用最适于无连接模式的局域网协议栈CLN S1;而连至远端NE管理系统时所用的Q接口,多采用既能支持无连接模式,又能支持X.25的面向连接方式的CLN S2协议栈,也可以采用完全的面向连接方式的CON S1协议栈。

ATM(异步传输模式)技术是一项正在蓬勃发展的新技术。

其产生的动因是试图找到一种能统一传送带宽和质量要求不同的电信业务的方式,以便在宽带通信网络中提供更具吸引力的电信业务,如数字电视、数字高清晰度电视、高质量可视电话、视频点播等。

ITU-T定义ATM为“以信元为信息传输,复接和交换的基本单位的传送方式”。

用ATM技术构建的网络称为ATM传输网,它是由VC级的信道网(或电信网),VP级的通路网和传输媒体网3级组成。

而各级网由终端、中继点、连接及链路4部分构成。

在实际的接续过程中,VC连接是指终端——终端的连接,其终点是终端,VC连接的中继点实际上是由交换机实现其功能,即称为虚信道处理(VCH,Virtual Channel Handler)功能;VP的连接是集中VC链路,VC链路的两端是VP连接的终点,即VP的终端可以是交换机,其功能由交叉连接设备来完成,即称为虚通路处理(VPH,Virtual PathHandler)功能。

VCH和VPH的交换处理是一样的,所不同的是选路用的信头结构不同,分别为VCI和VPI。

在ITU-T的I.321建议中定义了B-ISDN协议参考模型,如下图。

它包括三个面:用户面、控制面和管理面,而在每个面中又是分层的,分为物理层、ATM层、AAL层和高层。

协议参考模型中的三个面分别完成不同的功能:用户平面:采用分层结构,提供用户信息流的传送,同时也具有一定的控制功能,如流量控制、差错控制等;控制平面:采用分层结构,完成呼叫控制和连接控制功能,利用信令进行呼叫和连接的建立、监视和释放;管理平面:包括层管理和面管理。

其中层管理采用分层结构,完成与各协议层实体的资源和参数相关的管理功能,如元信令。

同时层管理还处理与各层相关的OAM信息流;面管理不分层,它完成与整个系统相关的管理功能,并对所有平面起协调作用。

ATM具有以下特点: (1)采用面向连接并预约传输资源的方式 为提高处理速度,ATM采用面向连接的虚电路方式工作,即在通信开始时先建立虚电路(虚电路包括虚信道和虚通路),用户将虚电路的标识写入信头VCI/VPI中,网络根据虚电路标识将信息送往目的地。

同时在呼叫过程向网络提出传输所希望使用的资源,网络根据当前的状态决定是否接受这个呼叫。

其中资源的约定并不像电路交换中给出确定的电路或PCM时隙,只是用以表示将来通信过程所可能使用的通信速率。

这种方式避免了复杂的信元顺序控制工作,通过合理的QoS、流量控制、网络资源管理控制以及各种差错控制技术,使信元丢失率降到各种业务可以接受的程度,满足各类业务的语义透明性要求。

可以说既兼顾了网络运营效率,又能够满足接入网络的连接进行快速数据传输。

(2)无逐段链路的差错控制和流量控制,时延小 ATM协议运行是在误码率很低的光纤传输网上,同时预约资源机制保证网络中传输的负载小于网络的传输能力,所以ATM取消了终端设备和端局节点、网络内部节点之间链路上的差错控制和流量控制,而将这些工作推给了网络边缘的终端设备完成,因此ATM信头的功能被大大简化,从而提高信头的处理速度,使信元的排队时延大大缩短。

长度小而固定的信元的信息交换是在第二层完成的,而且协议简单,可以采用硬件来实现交换,使得交换速度加快,从而减小了交换节点内部缓冲器的容量,使信元的排队时延和时延抖动降低,有利于信息传送的时间透明性。

因此,ATM能够很好的满足话音、动态图像等实时性业务的要求。

(3)采用透明的网络传输方式 ATM网络以语义透明和时间透明的传输方式工作。

所谓语义透明是要求网络在传送信息时不产生错误,或者说端到端的错误率非常低,即不改变业务信息的语义。

所谓时间透明是要求网络用最短的时间将信息从发源地送到目的地,即不改变业务信息的时间关系。

(4)具有统计复用功能网络资源可以按需分配,提高了网络资源的利用率。

在ATM方式下,网络具有多方连接的功能,其中包括支持广播(broadcast)型连接和多播(multicast)型连接的能力。

(5)兼容性好 ATM通过设置AAL层,对业务类型进行划分,通过AAL层的适配把不同电信业务转换成统一的ATM标准,实现使用同一个网络来承载各种应用业务的目的,再辅之必要的网络管理功能,信令处理与连接控制功能,可以设置多级优先级(如连接优先级和信元优先级等)管理功能,使ATM能够广泛适应各类业务的要求。

在ATM交换网络中,通常为两层结构,在核心交换层,大容量的骨干ATM交换机互相连接构成交换机之间以OC-12(622Mbit/s)或OC-48(2。

4Gbit/S)的主干。

在外围,ATM接入设备可提供给用户接口种类有:(1)高速ATM接口(通常提供给拥护OC-3(155Mbit/s)或OC-12(622Mbit/S)的接入带宽,其网络接口为光纤SC接口,其接入数据的帧格式为ATM信元,在ATM接口上提供的服务类型为ATM PVC(permanent virtue circuit),在一个物理接口上提供多条PVC支持。

)(2)低速ATM接口(通常提供两种速率的接入,E3(34Mbit/s))和OC-12(622Mbit/s),其网络接口为G。

703铜线接口,其接入数据的帧格式为ATM 信元,在ATM接口上提供的服务类型为ATM PVC,在一个物理接口上可提供多条 PVC支持。

)(3)帧中继接口(提供的接入速率为64Kbit/s到2Mbit/s,ATM上提供的帧中继接口最高可达50Mbit/s,其接口通常为G.703或V.35其接入数据为帧中继的分组,在ATM接入设备的帧中继接口上通过FRF。

5或FRF。

8,提供帧中继的PVC与ATM PVC的转换。

在一个物理接口上可提供多条PVC支持。

)(4)电路仿真接口(提供从64kbit/s到2Mbit/s的接入速率,提供透明比特流的传输,若为2Mbit/s速率的接入,其接口通常为G。

703 或V。

35。

若提供的是2Mbit/s或更低等速率时,接口通常为V。

35。

路由器可利用这种端口实现点对点的专线连接。

)(5)局域网接口(提供10Mbit/s或100Mbit/s的接入速率。

其接口通常为RJ-45。

在局域网接口上,通常可提供IP路由功能,即每一个以太网接口可配置IP地址且可提供路由功能)ATM 技术的发展从一开始就被分为两个独立的领域。

众多高速局域网在基于ATM 交换技术的基础之上构建其骨干网;在广域网领域,ATM 已经成为电信运营商的首选技术。

下面介绍ATM的三种接入方法1. 第一种接入方法 就是提供连网技术,通过将所有客户连接在一个边缘交换机上,在运营商中央局终止 ATM。

这种方法对企业同时具有如下的优点和缺点。

(1)简化接入网,客户端无需任何 ATM 相关配置; (2)客户办公室不需要特殊服务设备,只需要配置物理层设备即可(光纤、铜线或无线设施);(3)只有中央局内部和中央局之间才提供 ATM 质量保证,客户办公室之间不提供 ATM 质量保证,因此业务等级协议(SLA)变得更难实施; (4)为了确保各种通信的服务质量(QoS),客户必须拥有多条链路与中央局连接(用于不同业务—FR、IP、局域网、语音等等); (5)由于处理多种用户通信业务,可能会堵塞 ATM 边缘多路复用器和交换机。

2.第二种方法就是在客户建筑物内安装 ATM CPE(客户端设备),为客户提供服务终端,它具有如下优点和缺点。

(1)通常,CPE比“物理”调制解调器贵; (2)接入网络需要特定工程技术规则进行通信管理; (3)客户办公室之间可采纳适用于各种通信业务和专门应用的“端到端”服务质量(QoS),从而使运营商能够提供 SLA 增值业务,以及网络端到端监控诊断; (4)可以在客户建筑物中而非服务提供商的中央局进行多业务通信的聚集,因此,只需一条线路与客户相连接,同时在客户建筑物实施通信设计,从而边缘转换器可以将全部处理能力分配给转换单元,而非控制多个客户的多业务通信。

3.第三种方法在客户建筑物内安装CLE(客户地点设备),用于提供本地 ATM 业务的 ATM NTU(A-NTU),同时也是运营其它 ATM 业务的交互 NTU(I-NTU)。

随着发展继续深入, ATM 交互 NTU(网络终端装置)低成本的特性日益明显,它能够满足 ATM 服务提供商的特殊要求,并且在运营商网络端终止业务。

它属于服务提供商,但是安装在客户建筑物内。

在这方面,英国电信(BT)跨出了具体的第一步,英国电信邀请 RAD 数据通信公司加盟,确定 NTU 概念并开发专用 ATM 网络终端装置(NTU)。

英国电信后来配置 ATM 网络终端装置(NTU),成为其 ATM 多业务平台不可分割的一部分。

英国电信的网络终端装置(NTU)方法很快得到欧洲和亚洲主要运营商的采纳和实施,包括法国电信、德国电信、KPN、日本电信、日本电报电话公共公司(NTT)、另外还有 Matav 和 Eircom。

第三种解决方案之所以得到广泛采用,主要是因为越来越多的客户寻求服务质量(QoS)保证,但更为重要的前提是他们已经准备好承担 SLA 成本。

CLE能提供服务提供商必须的所有服务质量保证,此外,还提供其他功能特性,如业务配合和集中(ATM 语音、ATM 转换帧中继、ATM 以太网等),以及 SNMP 网络管理。

它们作为运营商业务和用户网络之间的分界点,使服务提供商能够将他们的管理能力延伸到客户建筑物,履行全部服务质量职责,同时检查用户-通信过程的一致性。

通过精心实施1.610 运营、管理和维护(OAM)支持,这些CLE 使运营商能够提供更好的服务,同时为客户提供有关如何更有效的使用 ATM 业务以及这些业务如何定价等方面的有用信息。

有成本效益的服务能通过深入、强大的通信管理和控制得以实现。

自从第一套 CLE 投入使用,其他 NTU/CLE 根据市场要求得到开发。

开始时,大多数客户都是使用高速率(E3/155M)的ATM 连接公司和政府机构。

然而近年来,市场已经朝着新的方向发展:小型企业采用基于 ATM 的服务进行组网;非传统运营商和因特网服务提供商(ISP)得到发展,并要求拥有他们自己的解决方案;新技术(2.5G和3G移动技术要求额外带宽和完全不同的方法)。

面对令人目不暇接的众多网络新技术,建网时所进行的网络选型就显得非常重要,而投资巨大、涉及面广的广域骨干网建设更是需要慎之又慎。

目前,面对成熟的SDH和ATM技术,电信厂商建设广域骨干网时通常的作法是:第一、采用光纤作为传输介质,这是必然的选择了;第二、使用SDH技术连接光纤端接设备,形成一个距离范围可达到无限的SDH光纤网;第三、在SDH传输网上采用各种ATM交换设备,构建具备数据、话音、视频等多服务能力的ATM骨干网。

3G时代的到来对运营商是个巨大的挑战,由于3G发展的不确定性,所以建设的网络必须是高性价比的灵活网络。

3G传输网的接入部分有两种截然不同的技术:传输和ATM,传统的网络结构将他们分成两个不同的网络层,虽然网络设计简单了,但网络复杂昂贵不灵活。

为了满足需求,ECI提出了创新的概念:同一平台集成SDH和ATM,优化了网络,使网络更灵活经济,更具扩展性。

3G中的Node B和RNC通过Iub接口连接,Iub接口是复杂的协议族,是基于ATM上的媒介、信令、OAM等等,ATM能通过TDM链路传输,大部分Node B节点含有基于ATM IMA的部分2M或几个2M,而RNC节点往往是多个2M或STM-1。

早期的3G标准定义Node B和RNC之间通过TDM电路连接,在ATM层,Node B和RNC通过ATM链路直接连接,没有ATM交换,提供以下功能:a.独立于传输层 b.通过ATM IMA机制把多个TDM链路定义成一个逻辑电路 c. ATM统计复用。

3G标准版本4定义了ATM的交换和QoS的保证,ATM的交换有2个好处:RNC可以是STM-1接口,大大降低了RNC的成本;提高了带宽利用率。

ATM交换机可以保证带宽分配,可以基于峰值和恒定速率的统计复用,可以基于用户的统计复用,从而提高了网络带宽的利用率。

3G传输网的构建可以采用两种方法:1. RNC节点的E1接口通过纯TDM的SDH网络和Node B节点相连接 2. RNC节点是STM-1接口,Node B 节点是E1接口,ATM交换机用于E1到STM-1的会聚,ATM交换机可以放在RNC节点处,也可以放置在传输网络中的其他位置。

ATM交换机在3G传输网络中是必需的,但也是昂贵的,另外,安装ATM交换机不仅仅是增加ATM设备,另外还需要大量的PDH和SDH接口,Node B节点的典型配置会聚通道化的STM-1(52个E1)和本地Node B节点的20个E1。

总的ATM E1数是72个,因此1个通道化的STM-1是不够的,需要ATM层的会聚,如果仅仅是TDM的会聚,需要另外一个STM-1,另外一个STM-1中仅仅有9个E1,浪费是明显的。

而ATM交换机可以把72个 ATM E1 压缩到一个VC4中,ATM交换机需要一个STM-1接口和72个E1接口,同时SDH网络也需要增加一个STM-1接口和72个E1接口,显然是个昂贵的方案,并不适合于3G传输网的应用。

IMA是多个E1链路传送ATM的地层协议,多个物理链接配置成一个ATM链接,可以不影响业务上下电路,这是个很强大的功能,但IMA在硬件层面实现,因此相同IMA组的所有链接必须在同一接口卡上,但实际上很多情况很难把IMA组分配到同一接口卡上,而相同IMA组的所有E1又必须被相同的ASIC芯片处理。

这种限制使网络规划几乎不可能,移动运营商如果把E1链接分配到IMA组,无法规划将来的扩容,如果先期没有留有扩容余量,将来的IMA扩容及其复杂并影响业务,如果留有大量余量,导致先期投资过大,有投资浪费的风险。

ECI 3G传输网络的解决方案 移动通信一直是ECI重要的战略市场,针对移动3G传输市场对ATM业务的需求,ECI专门提出了解决方案,在ECI的单个XDM平台上,集成了SDH和ATM功能,具有很高的性价比、灵活性和面向3G的可升级性。

XDM是ECI公司专门为移动和城域网络设计的MSTP平台,支持各种TDM应用和纯光应用,还有一个核心特点是XDM的完全基于VC12的全交叉矩阵,可以保证任意E1之间无限制地交叉链接,很利于ATM的应用。

ECI的ATM卡:ATS卡,是和XDM的交叉矩阵相连,本身无物理接口,它实际上是ATM交换机,支持3种类型的ATM端口-1中的VC4或任意高阶虚容器的VC42.物理E1端口或任意接口中的E1通道 3.多E1的IMA组。

在ATM层,任何端口之间的ATM业务可以无限制地任意交换。

远方通过STM-1来52个E1,本地还有20个E1,采用外接ATM交换机的方式的话,ATM和SDH设备双方都要提供1个STM-1接口和72个E1接口,如果采用ATS方案的话,交叉矩阵把远方STM-1中的52个E1和本地20个E1交叉到ATS卡中,ATS卡把72个E1会聚到一个VC4中,交叉矩阵再把这个VC4交叉到STM-1端口。

单个设备同时完成SDH和ATM的功能,显然更经济,更灵活。

XDM的集成SDH/ATM的解决方案更紧凑,灵活,经济和易管理。

将ATM和SDH集成在一起,大大简化了硬件设备,当采用SDH和ATM两种设备时,设备间需要电缆连接,采用集成技术,可以省掉连接电缆,ATS卡本身无物理接口,所以单卡可以支持高密度接口126个E1(支持84个IMA组)。

而ATM交换机没有这么高的端口密度。

集成方案只有一套管理系统,减少运营成本,只有一套硬件,设备占地面积少,功耗小,连接电缆少等等,大大减少了运营费用。

IMA组的规划是个复杂的工程,如果一开始仅考虑当前ATM E1的需求,那将来的扩容可能要改变电缆连接,这是不允许的,所以必须留出E1的端口用于将来的扩容,但将来扩容的不确定性是种风险。

XDM中的ATS卡是理想的解决方案,不像传统的ATM交换机,ATS卡能把不同PDH卡上的不同E1会聚到一个IMA组中,在传统的ATM交换机方案中,必须预留一些ATM E1接口给将来扩容用,而对于ATS方案,将来有新的ATM E1扩容只需要连接到XDM的PDH E1接口上,即使不同PDH卡上的ATM E1,XDM也能将他们交叉到目的地。

XDM是一个随着成长而建设、付费的平台,而ATS仅仅是XDM的一块板卡,在网络上增加ATM应用仅仅是增加ATS卡而已,增加的费用很低,所以网络初期投资成本很低,并且将来扩容的费用也很低,当ATM业务变化时,无需考虑配置多大容量的ATM交换机,简单到只要考虑增加几块ATS板卡就可以了。

为了降低成本,3G网络必须和已有的2G网络共享网络资源。

2G的TDM业务在标准的TDM链路中传输,XDM的完全低阶交叉矩阵适合于移动网络,提供了灵活方便的2G解决方案,在此同时,ATS卡把多个Node B节点的ATM业务会聚到IMA组中,3G的IMA组和2G的TDM业务共享于相同的通道化的STM-1链路中,通过网管可以实现两个网络的带宽分配。

XDM的ATS是创新化的设计,集成了SDH和ATM两种技术,针对3G传输网络,提供了强大并且经济的解决方案。

两种技术的集成使网络的成本大大降低,并且使网络有巨大的灵活性,适合于网络发展的各种趋势,满足用户和容量的增加数量的增加。

XDM的ATS解决方案不仅仅是经济的网络解决方案,而且是一个完全可升级的解决方案,移动运营商今天不必投资在将来并不明朗的需求,同时需求增长来临的时候,现有的网络可以毫无限制地升级。

赞(0)
未经允许不得转载:优乐评测网 » 光纤通道网络设计最佳实践: 为可靠和高性能的连接打下基础 (光纤通道网络最短帧长)

优乐评测网 找服务器 更专业 更方便 更快捷!

专注IDC行业资源共享发布,给大家带来方便快捷的资源查找平台!

联系我们