引言
在数据中心和关键任务应用中,不间断电源 (UPS) 是至关重要的设备,负责在停电或电压波动时提供可靠的电源。UPS 也是耗能设备,因此优化其效率对于降低能源消耗和降低总体拥有成本 (TCO) 至关重要。
UPS 效率
UPS 效率衡量其将输入功率转换为输出功率的能力。效率越高,能量损失越少。UPS 效率通常以百分比表示,高于 90% 的效率被认为是高效的。
效率因素
影响 UPS 效率的因素包括:
- 拓扑结构:UPS 的拓扑结构(在线、离线或在线交互式)影响其效率。
- 负载:UPS 的效率会根据其负载而变化。在低负载条件下,效率可能较低。
- 环境因素:温度、湿度和海拔高度等环境因素会影响 UPS 的效率。
功率因数 (PF)
功率因数 (PF) 是衡量 UPS 实际消耗的功率与其视在功率(电压和电流的乘积)的比率。理想的 PF 值为 1,表示 UPS 以纯阻性负载运行,不消耗无功功率。
低 PF 会导致更高的能源成本,因为 UPS 消耗的无功功率需要由电网支付。因此,具有高 PF 的 UPS 对于降低能源消耗至关重要。
优化 UPS 效率
可以通过以下策略优化 UPS 效率:
- 选择高效的 UPS:在购买 UPS 时,请寻找具有高效率评级的 UPS。
- 优化负载:尽量将 UPS 加载到 50-75% 的额定容量
不间断电源是什么你造吗 大神来给你解答
UPS不间断电源,简单点说,就是一种含有储能装置,以逆变器为主要组成部分的恒压恒频的不间断电源。
主要用于给单台计算机、计算机网络系统或其它电力电子设备提供不间断的电力供应。
还广泛应用于矿山、航天、工业、通讯、国防、医院、应急照明系统等各个领域。
下面小编就给大家详细科普一下什么是不间断电源,以及不间断电源的特点。
一、不间断电源是什么
UPS(UninterruptiblePowerSystem/UninterruptiblePowerSupply),即不间断电源,是将蓄电池(多为铅酸免维护蓄电池)与主机相连接,通过主机逆变器等模块电路将直流电转换成市电的系统设备。
主要用于给单台计算机、计算机网络系统或其它电力电子设备如电磁阀、压力变送器等提供稳定、不间断的电力供应。
当市电输入正常时,UPS将市电稳压后供应给负载使用,此时的UPS就是一台交流市电稳压器,同时它还向机内电池充电;当市电中断(事故停电)时,UPS立即将电池的直流电能,通过逆变零切换转换的方法向负载继续供应220V交流电,使负载维持正常工作并保护负载软、硬件不受损坏。
UPS设备通常对电压过高或电压过低都能提供保护。
UPS的作用
UPS具有以下几项基本功能:
1.电网电压正常时,市电电压通过UPS稳压后供应给负载使用,性能好的UPS本身就是良好的交流稳压器,同时改善电源质量;同时它还对机内的电池进行充电,储存后备能量。
2.电网电压异常时(欠压、过压、掉电、干扰等)UPS的逆变器将电池的直流电能转换为交流电能维持对负载的供电。
在电网供电和电池供电之间自行切换,确保对负载的不间断供电。
而且可以根据设备的精密程度来选择可承受的切换时间。
二、不间断电源的特点
UPS是针对中国电网环境和网络监控及网络系统、医疗系统等对电源的可靠性要求,克服中、大型计算机网络系统集中供电所造成的供电电网环境日益恶劣的问题,以全新的数字技术研制出的第三代工频纯在线式智能型UPS。
直流电源,是维持电路中形成稳恒电流的装置。
如干电池、蓄电池、直流发电机等。
UPS和直流电源是企业重要的供电保障设备,传统的维护管理包括:①日常巡检外观,定期更换电池、滤波电容、风机等易损件,大修时做电池活化等;②改造或采用换代设备,使用高级工具测试电池性能。
这种管理方式企业投入成本高,维护人员工作量大,不易实时掌握设备运行状态和关键数据,设备事故预防能力低。
实施在线维护管理可避免传统方式的不足之处,获得良好效益。
UPS的中文意思为“不间断电源”,是英语“UninterruptiblePowerSystem/UninterruptiblePowerSupply”的缩写,它可以保障计算机系统在停电之后继续工作一段时间以使用户能够紧急存盘,使用户不致因停电而影响工作或丢失数据。
三、不间断电源选购须知
1、首先要确定您的设备是多大功率的,一般来讲普通PC机或工控机的功率在200W左右,苹果机在300W左右,服务器在300W与600W之间,其他设备的功率数值可以参考该设备的说明书。
2、其次应了解UPS的额定功率有两种表示方法:视在功率(单位VA)与实际输出功率(单位W),由于无功功率的存在所以造成了这种差别,两者的换算关系为:视在功率*功率因数=实际输出功率。
3、UPS通常分为工频机和高频机两种。
工频机由可控硅SCR整流器,IGBT逆变器,旁路和工频升压隔离变压器组成。
因其整流器和变压器工作频率均为工频50Hz,顾名思义叫工频UPS。
高频机通常由IGBT高频整流器,电池变换器,逆变器和旁路组成,IGBT可以通过控制加在其门极的驱动来控制IGBT的开通与关断,IGBT整流器开关频率通常在几K到几十KHz,甚至高达上百KHz,相对于50Hz工频,称之为高频UPS。
看了以上的介绍想必大家对UPS都有所了解了吧,不间断电源因为具有高效率、高可靠性、大功率化、模块化、绿色、节能、环保等特点,所以拥有很好的发展前景,目前市场的需求也不断扩大,国家也颁布了一系列发展政策和发展规划以鼓励本行业的发展。关于间断电源是什么就先介绍到这里,想了解更多请继续关注土巴兔学装修吧!
土巴兔在线免费为大家提供“各家装修报价、1-4家本地装修公司、3套装修设计方案”,还有装修避坑攻略!点击此链接:【】,就能免费领取哦~
不间断电源(UPS)未来的发展趋势是什么?
三相不间断电源的新进展[日期:2006-11-13] 来源:电源技术应用作者:浙江大学 王林兵 何湘宁 [字体:大 中 小]摘要:对三相不间断电源系统的各模块电路拓扑、整机电路结构以及各种流行控制策略做了一个概括性评析,指出了不间断电源设计和应用中存在的问题及当前研究的新热点,最后对UPS的发展动向做出了预言关键词:三相不间断电源;逆变器并联;数字控制O 引言在今后相当长的一段时间内,我国市电电网供电不足,电压波动大,干扰严重的局面仍将存在。
而各行业、各领域的快速发展对供电质量提出了越来越高的要求,尤其是实时性很强的重要系统、重要部门和重要的用电设备对供电质量的要求和我国的电网实际状况的矛盾日益尖锐。
因此,不间断电源(UPS)作为一种稳压稳频纯净化的绿色电源越来越成为人们关注的焦点。
为了不断提高UPS的性能,科研人员对UPS系统做了大量的研究,提出了很多的电路拓扑与控制策略。
1 UPS的电路拓扑UPS的可靠运行离不开各模块的协调工作,下面就UPS主要功能模块电路拓扑进行简要分析。
1.1 整流和功率因数校正电路整流电路在应用中构成直流电源装置,是公共电网与电力电子装置的接口电路,其性能将影响公共电网的运行和用电质量。
高性能的UPS要求有较高的输入功率因数,并尽量减少输入电流的谐波分量。
传统单相UPS多采用模拟方法,三相UPS多采用相控式整流电路和电压型单管整流电路。
1.1.1 传统三相相控式整流电路和电压型单管整流电路相控式整流电路采用半控式功率器件作为开关,存在着以下问题:1)网侧谐波电流的存在将降低设备网侧功率因数,增加无功功率;2)相控整流换流方式,导致换流期中电网电压畸变,不仅使自身电路性能受到影响,而且对电网产生干扰,对同一接地点的网间其他设备带来不良影响;3)相控整流环节是一个时滞环节,无法实现输出电压的快速调节。
电压型单管整流电路是三相不控整流桥加Boost电路的简称,它的缺点是:电流峰值大,不仅妨碍系统功率的提高,也增加了导通损耗和开关损耗;为了保持网侧功率因数的提高,Boost电路必须有一定的升压比,这对三相电路会导致直流输出电压过高。
1.1.2 电流型三相桥式整流电路电流型三相桥式整流电路如图1所示,其优点是反馈控制简单,不需要在控制电路中加入电流反馈,只须调节各开关管的占空比就可以实现输入电流正弦化;直流侧的电压较低。
缺点是输入电流正弦度不是很好,在输入侧必须加入并联电容,实现移相。
这种电路现在开始成为研究的热点之一。
这种电路适用于大功率整流电路且对功率因数要求不高的场合。
1.1.3 电压型三相桥式整流电路电压型三相桥式整流电路如图2所示,其特点是采用高频PWM整流技术,器件处于高频开关状态,由于器件的开通和关断状态可以控制,所以整流器的电流波形是可控制的。
这种电路的优点是可以得到与输入电压同相位的输入电流,也就是输入功率因数为1,输入电流的谐波含量可以接近为零;能量可以双向流动,正常时能量从交流侧向直流侧流动,直流输出电压高于给定值时,能量从直流侧向交流侧流动,具有较高的转换效率。
缺点是属于Boost型整流电路,直流侧电压要求较高。
这种电路也是近年来研究的一个热点。
1.2 蓄电池组和充放电电路蓄电池组是UPS的储能单元,市电正常时它吸收来自市电的能量并以化学能的形式储存起来,一旦市电中断,它把储存的化学能转换为电能向逆变器供电,维持负载供电的连续性。
在中小功率的UPS系统中,电池组的电压通常比较低,因此,通常使用能量能够双向流动的充放电电路[4]。
大功率系统中为了提高效率,简化电路通常直接把电池组并接在直流母线上。
1.3 逆变电路逆变器是UPS的核心,它把直流电能转换成用户所需的稳压稳频的交流电能。
下面仍以三相逆变器为对象分析近年来逆变器的研究热点。
1.3.1 三相半桥式逆变电路在三相逆变电路中以三相半桥桥式电路应用最为普遍,这种电路的特点是采用全控型器件组成逆变器,存在着功率密度高,性能好,小型轻量化等优点。
这种电路便于使用新的控制策略以提高逆变器的质量。
但是,要实现带100%的独立负载是比较困难的。
1.3.2 H桥逆变器对于超大容量的逆变器,由于功率等级的大幅度提高,对逆变器的结构提出了新的要求,H桥臂逆变器便是选择之一。
这种逆变器输出变压器采用多绕组接法,输出变压器的原边采用3个独立的绕组,逆变器输出采用3个独立的H桥。
这样控制方便,但是成本较高。
1.3.3 三相四桥臂变换技术由于三相电路中,三桥臂逆变器本身存在着固有的缺陷,人们开始寻求新的电路结构,于是出现了三相四桥臂逆变器,如图3所示。
这种电路结构输出为三相四线制,三相电压可以独立控制,控制方法灵活,但是这种拓扑的算法比较复杂,PWM矢量在三维空间中旋转,必须采用数字控制方法才能实现空间PWM波形的生成,这种电路成为了近年来研究的热点之一。
1.4 三相UPS整机电路1.4.1 传统三相UPS电路结构传统的三相UPS结构,输入采用晶闸管整流,输出采用逆变器,电池直接挂接于直流母线,整流器同时作为充电器。
输出采用变压器隔离,可以实现输入输出完全隔离,确保电网的扰动不会对负载造成干扰。
市电断电时,电池通过逆变器输出稳定的交流电;在逆变器出现故障时,通过旁路输出电压,保证了供电的可靠性。
这种结构的主要缺点是体积和重量都比较大。
1.4.2高频链式三相UPS为了降低成本,减小UPS的体积和重量,出现了高频链式三相UPS,如图4所示。
这种电路省去了庞大的工频变压器,输入采用高频整流,可以获得较高的输入功率因数和较低的输入谐波电流。
其缺点是输入输出没有变压器隔离,电网的扰动可能会给UPS的输出造成扰动;输出三相电压靠电池和电容中点形成中线,所以在控制中必须保持正负直流电压幅值的相等,否则输出中线会有较大的直流成分,对负载和负载中的变压器不利;输入采用三相四线制,中线有电流流过,可能会造成中线电位偏移,对负载造成干扰;输入输出不隔离,并联时的环流问题较难解决。
1.4.3 新的在线互动式UPS由于以上两种UPS都要经过两次满功率变换,因此系统的效率较低,从提高系统效率的角度出发,出现了一种串并联补偿式的大容量结构,是一种新的在线互动式结构,如图5所示。
这种拓扑输入输出同样没有变压器隔离,所以会有高频链式UPS的缺点。
这种UPS的输出频率必须保持与电网一致,而且对电网的扰动的抑制能力不强,因而供电质量比传统的三相UPS差。
它的特点是从输入到输出间的能量不是经过满功率的变换,同样是由两个高频变换器组成,但是变换器1最大只承受20%的功率,从成本上讲,这种结构的成本更低。
在控制方法上,变换器1是一个电压补偿器,用于补偿电网电压的畸变;变换器2是一个电流补偿器,用于补偿负载的谐波电流,并且在市电断电时作为满功率电压型逆变器向负载供电。
1.4.4 输入输出隔离的高频链UPS由于传统工频UPS的输入输出带有隔离变压器,输出有很好的隔离特性,高频链式的UPS有很好的输入特性,因此,出现了这种带有输入输出隔离的高频链式的UPS如图6所示。
由于高频整流的缺点,在输入侧必须接一个自耦变压器降压,增加了整机的重量和成本;另外,由于输入采用了高频变换器,整机的效率比高频链式和传统式UPS的效率都低。
但是,由于输入功率因数是1,没有谐波电流,所以所消耗的总电能低于传统三相UPS。
1.4.5输入输出并联的UPS这种电路中,输入端由多个整流器并联而成,给直流母线供电,同时直流母线给多个逆变器提供直流电压,多个逆变器的输出端直接连接同时给负载供电。
这种方式可以增强UPS的容量,增加系统的可靠性,成本下降,可维护性增强,但是,并联模块越多,各模块间的均流问题越难解决。
2 不间断电源的控制技术随着控制理论和功能丰富,性能优良的各种微控制器的迅猛发展,出现了多种离散化控制方法。
从控制反馈回路的数目可分为单环、双环、多环控制。
在硬件允许的条件下尽可能地提高反馈回路数目,可以提高控制效果。
从控制原理上看包括数字PID控制、状态反馈控制、无差拍控制、重复控制、滑模变结构控制、模糊控制、神经网路控制、空间矢量控制等方法。
数字PID控制控制的适应性好,具有较强的鲁棒性;算法简单明了,便于用单片机或DSP实现。
但是存在两方面的局限性:一方面是系统的采样量化误差降低了算法的控制精度;另一方面,采样和计算延时使得被控系统成为一个具有纯时间滞后的系统,造成PID控制器稳定域减少,增加了设计难度。
预测控制可以实现很小的输出电流畸变,抗噪音能力强,但是,这种算法要求知道精确的负载模型和电路参数,因此鲁棒性差,而且由于数值计算造成的延时在实际应用中也是一个问题。
滞环控制具有快速的响应速度,较高的稳定性,但是滞环控制的开关频率不固定,使电路工作可靠性下降,输出电压的频谱变差,对系统性能不利。
无差拍控制的基本思想是根据逆变器的状态方程和输出反馈信号推算出下一个开关周期的PWM脉冲宽度,因此,从理论上可以使输出电压在相位和幅值上都非常接近参考电压,由负载变化或非线性负载引起的输出电压误差可在一个开关周期内得到校正。
但是,无差拍控制是一种基于被控制对象精确数学模型的控制方法,鲁棒性很差。
滑摸控制是一种非线性控制,这种控制的特点是控制的非连续性。
这种控制既可以用于线性系统也可用于非线性系统。
这种控制方法具有很强的鲁棒性。
缺点是要得到一个令人满意的滑模面是很困难的。
重复控制是一种基于内模原理的控制方法。
逆变器采用重复控制的目的是为了消除因整流桥负载引起的输出电压波形周期性的畸变。
重复控制器可以消除周期性干扰产生的稳态误差,但是,由于重复控制延时一个工频周期的控制特点,使得单独使用重复控制的UPS逆变器动态特性极差。
模糊控制属于智能控制的范畴。
模糊控制器的设计不需要被控对象的精确数学模型,因此具有很强的鲁棒性和自适应性。
模糊控制类似于传统的PD控制,因而这种控制有很快的响应速度,但是其静态特性不令人满意。
神经元网络控制是模拟人脑神经中枢系统智能活动的一种控制方式。
神经网络具有非线性映射能力、并行计算能力和较强的鲁棒性等优点,已广泛地应用于控制领域,尤其是非线性系统领域。
目前在神经网络结构的设计、学习算法等方面已取得了一定成果。
但是,由于硬件系统的限制,目前神经网络控制还无法实现对逆变器输出电压波形进行在线控制,多数应用都是采用离线学习获得优化的控制规律,然后利用得到的规律实现在线控制。
谐波注入式PWM技术,直流母线电压的利用率基本上可以达到loo%。
这种方法对于电压开环的控制系统非常有效,但在闭环控制系统中由于谐波注入的初始相位必须与基波保持一致,在电压瞬时值控制中电压基波的初始相位无法精确定位而难以应用。
空间矢量PWM具有电流畸变小、直流母线电压利用率高以及易于数字化实现等优点,因此近年来得到了较多的应用。
这种控制方式也需要电路的精确模型。
上述各种控制方案都有其优势,但是也有其不足。
同时采用不同的控制方法形成复合控制的控制方案在实践中得到了广泛的应用,取得了较好的效果。
3 不间断电源设计和应用中存在的问题美国UPS厂商APC.公司,总结并归纳了UPS供电系统当前面临的、也是今后必须解决的5个方面的问题:1)生命成本周期问题;2)不间断电源系统的可适应性及可扩展性问题;3)提高不间断电源的可用性问题;4)不间断电源对供电系统的可管理性问题;5)可服务性问题。
4 不间断电源的最新发展动向不间断电源的发展动向是UPS的多机并联冗余化,采用冗余并机技术提高UPS的容量和可靠性;采用功能更丰富的硬件设备实现全数字控制,使各种先进的复杂控制算法得以运用而不断提高UPS的性能,即向数字化和高频化发展;UPS的进一步智能化和网络化,使计算机网络成为不间断网络。
4.1 UPS的多机并联技术实现冗余化UPS的并联技术可以带来以下几个方面的好处:1)可以灵活地扩大电源系统的容量;2)可以组成并联冗余系统以提高运行的可靠性:3)极高的系统可维修性,当单台电源出现故障时,可以很方便地通过热插拔的方式进行更换和维修。
采用并联技术可以形成具有容错功能的冗余式供电系统,从目前掌握的资料来看,主要有以下几种冗余配置方案:1)集中式并联控制;2)主从式并联控制;3)分散式并联控制;4)环链式并联控制;5)无线式并联控制。
这几种并联方式,从可靠性的角度看,集中式最差,无线式控制最好,也成为近年来的研究热点。
4.2 UPS的数字化、高频化最初的UPS采用模拟控制方法有很多局限性。
随着数字处理器计算速度的不断提高,使得各种先进的数字控制方法得以实现,使UPS的设计具有很大的灵活性,设计周期缩短,性能大为提高。
UPS高频化,有效地减小了装置的体积和重量,并可消除变压器和电感的音频噪音,同时改善了输出电压的动态响应能力。
数字化控制方法成了当今交流电源领域的一个研究热点,一种必然的发展趋势是各种方法相互渗透,互相结合形成复合控制方案。
数字化复合控制是UPS控制的一个发展方向。
4.3 UPS的智能化、网络化为了适应计算机网络的发展,UPS中已经开始配置RS232接口、RS485接口、USB接口、SNMP卡和MODEM结合,成为计算机网络的一部分,具有以下优异的智能化、网络化特性。
1)实时监控功能它对UPS各模拟参量和表示工作状态的开关量进行实时高速采样,实现数字式监控。
2)自诊断、自保护功能 UPS将实时采集来的各项模拟参量和工作状态数据以及系统中的关键硬件设备的数据与正常值进行分析比较,以判断UPS是否有故障隐患存在。
如果有故障,根据相应的故障信息级别在控制面板的显示屏上以友好的图形界面、文字提示方式报警,或者在现场和控制室以指示灯灯光、报警器呜叫方式报警、也可以用自动拨通电话等方式报警,并做出相应的保护动作。
3)人机对话的控制方式 大型UPS可向用户提供监控器液晶显示屏,以图形和文字方式显示工作流程和参数信息。
可以提供让用户操作的可视化菜单。
并以帮助和不断提示的方式引导用户按照既定方式处理故障,有效防止误操作。
4)远程控制功能在网络化时代,UPS不仅应能向由它直接供电的硬件设备提供保护,还应该对整个网络中的运行程序和数据以及数据的传输途径进行全面地保护,使之成为不间断网络。
这就意味着UPS应配置相应的电源监控软件、SNMP(简单网络管理协议)管理器,使其具有远程管理能力,用户可执行UPS与网络平台之间的远程监控和数据的网络通信操作,使UPS成为网络系统中的重要组成部分。
这样,由网管员通过网管软件监控多台UPS,而且被管理的UPS可以在同一个LAN也可以在不同的LAN,甚至可以通过互联网,纳入网络管理系统来管理UPS。
由于未来网络的广泛化和全球化,必然带来网络的复杂化,多种形式的网络系统连接在一起。
作为网络系统的一部分,要求UPS能够实现在各种网络平台上的监控,而且随着Internet、Intranet和电子商务的超高速发展,用户对网络的可用性要求会越来越高,使UPS从对网络关键设备的保护延伸至对整个网络路径的保护
船用UPS电源必须具备的特点
船用UPS电源在设计上必须具备一系列关键特点,以确保在海上环境下的高效稳定运行和最低的成本投入。
首先,其性能优越,体现在紧凑的占地空间上,坚固的机械结构使其适应各种恶劣海况。
模块化并联设计提供高可用性,特别适合长时间、不间断的运行,如80k-400KVA的型号,能承受高故障清理,内置满负荷静态旁路开关,以及冗余元器件和冷却系统,确保高度可靠。
在设计上,这些UPS严格遵循IMO和IACS标准,具备IP32级别的防护,能抵抗振动并有防滑支撑垫,便于安装。
全球主要船级社认证如DNV、BV、LR、ABS等,进一步保障了其在海事应用中的安全和效能。
为了降低总体拥有成本,船用UPS体积小巧,输入电流谐波低,采用高效在线双变换技术,可达94%的效率。
六单元IGBT整流器确保了优秀的电气性能,功率因数校正功能减少了系统干扰,同时也支持多种负载类型。
双变换模式下,UPS能有效节能,减轻空调和通风系统的负担。
其灵活性和可升级性体现在可扩展功率、并联连接和集成监控系统的能力,同时提供多种备用时间选项和电池独立交货,方便现场升级。
DigiBat电池监测系统是另一大亮点,它可以实时监控电池状态,预测寿命,自动测试电池,预警潜在问题,确保电池系统稳定运行。
友好的显示界面支持多语言显示和远程监控,方便操作和维护。