服务器用户数据调查与分析:数据删除后的报警效用探讨
一、引言
随着信息技术的飞速发展,服务器作为数据存储和处理的中心节点,广泛应用于各行各业。
服务器用户数据的安全与保护已成为当今社会关注的热点问题。
本文将围绕服务器用户数据调查与分析展开讨论,并针对数据被删除后报警是否有效进行探究。
二、服务器用户数据调查
(一)调查目的
服务器用户数据调查旨在了解用户对服务器的使用习惯、需求以及满意度,从而为服务提供商改进服务、优化产品提供有力依据。
调查内容包括用户基本信息、使用频率、数据存储空间需求、网络速度要求等。
(二)调查方法
1. 问卷调查:通过在线问卷、电子邮件问卷等形式,向服务器用户发送问卷,收集用户的使用体验和建议。
2. 访谈调查:对部分用户进行电话访谈或面对面访谈,小哥了解用户的实际需求和对服务器的期望。
3. 数据收集:收集服务器的日志文件、性能数据等,分析用户的行为模式和需求。
(三)调查结果分析
通过对服务器用户数据的调查,可以得出以下结论:
1. 用户对数据安全性的需求日益增强,关注数据存储、传输和访问过程中的安全保障。
2. 大部分用户对现有服务器的性能和功能表示满意,但仍有一部分用户对网络速度和存储空间的扩展性提出改进意见。
3. 用户使用习惯呈现多样化趋势,对个性化服务的需求逐渐增加。
三、服务器用户数据分析
(一)数据存储分析
通过对服务器用户数据进行分析,可以了解用户的存储习惯和需求。
例如,用户数据的类型、大小、存储周期等,有助于服务提供商优化存储空间配置,提高存储效率。
(二)性能需求分析
通过对服务器性能数据的分析,可以了解用户在处理大数据量、高并发访问等场景下的性能需求。
这有助于服务提供商优化服务器配置,提高处理能力和响应速度。
(三)用户行为模式分析
通过对用户行为数据的挖掘和分析,可以了解用户的访问习惯、使用频率、活跃时段等信息。
这有助于服务提供商制定更为精准的营销策略,提供个性化的服务。
四、数据被删除后的报警效用探讨
(一)报警机制的作用
当服务器用户数据被删除时,报警机制能够及时发现异常行为,通知管理员或相关人员进行处理,从而最大限度地减少损失。
报警机制的作用在于及时发现、迅速响应、有效处置。
(二)报警机制的有效性
1. 技术层面:通过监控系统的运行状况和数据变化,及时发现异常行为并触发报警,为管理员提供处理依据。
2. 管理层面:建立健全的数据管理制度和应急预案,确保在数据被删除时能够迅速响应,降低损失。
3. 法律层面:在数据被非法删除时,报警机制能够及时固定证据,为法律追责提供依据。
报警机制的有效性也受到一些因素的制约,如报警系统的灵敏度、响应速度、人员素质等。
因此,需要不断完善报警机制,提高其有效性。
(三)应对策略
1. 加强技术研发:优化报警系统,提高报警的准确性和实时性。
2. 加强人员管理:提高人员的素质和处理能力,确保在接到报警后能够迅速处理。
3. 加强法律建设:完善相关法律法规,加大对非法删除数据的惩处力度。
五、结论
通过对服务器用户数据的调查与分析,可以了解用户的需求和期望,为服务提供商改进服务、优化产品提供有力依据。
同时,针对数据被删除后的报警效用进行探讨,有助于建立健全的数据管理制度和应急预案,确保在数据被删除时能够迅速响应,降低损失。
什么是IP地址、子网掩码、网关及DNS地址?
IP:互联网上联接了无数的服务和电脑,但它们并不是处于杂乱无章的无序状态,而是每一个主机都有惟一的地址,作为该主机在Internet上的唯一标志。
我们称为IP地址(Internet Protocol Address)。
它是一串4组由圆点分割的数字组成的,其中每一组数字都在0-256之间,如:0-255.0-255.0-255.0-255.0-255;如,202.202.96.33就是一个主机服务器的IP地址。
另一种表示方法摆脱了数字的单调和难记的缺点,用域名DN(Domain Name)来表示,即代表该主机的一个文字名称,如www.lg.com.cn是一家公司主机服务器的域名。
DNS(Domain Name System)域名服务器系统将形象的文字型域名翻译成对应的数字型IP地址。
通过上述IP,域名DN,域名系统DNS,就把每一台主机在Internet上给予了惟一的定位。
内网、公网是两种Internet的接入方式。
内网接入方式:上网的计算机得到的IP地址是Inetnet上的保留地址,保留地址有如下3种形式:6 2/a 172.16.x.x至 内网的计算机以NAT(网络地址转换)协议,通过一个公共的网关访问Internet。
内网的计算机可向Internet上的其他计算机发送连接请求,但Internet上其他的计算机无法向内网的计算机发送连接请求。
公网接入方式:上网的计算机得到的IP地址是Inetnet上的非保留地址。
公网的计算机和Internet上的其他计算机可随意互相访问。
子网掩码:子网掩码(subnet mask)是每个网管必须要掌握的基础知识,只有掌握它,才能够真正理解TCP/IP协议的设置。
以下我们就来小哥浅出地讲解什么是子网掩码。
子网掩码不能单独存在,它必须结合IP地址一起使用。
子网掩码只有一个作用,就是将某个IP地址划分成网络地址和主机地址两部分。
子网掩码的设定必须遵循一定的规则。
与IP地址相同,子网掩码的长度也是32位,左边是网络位,用二进制数字“1”表示;右边是主机位,用二进制数字“0”表示。
只有通过子网掩码,才能表明一台主机所在的子网与其他子网的关系,使网络正常工作。
子网掩码的术语是扩展的网络前缀码不是一个地址,但是可以确定一个网络层地址哪一部分是网络号,哪一部分是主机号,1 的部分代表网络号,掩码为 0的部分代表主机号。
子网掩码的作用就是获取主机 IP的网络地址信息,用于区别主机通信不同情况,由此选择不同路。
其中 A类地址的默认子网掩码为 255.0.0.0;B类地址的默认子网掩码为 255.255.0.0;C类地址的默认子网掩码为:255.255.255.0 网关:网关(Gateway)就是一个网络连接到另一个网络的“关口”。
??按照不同的分类标准,网关也有很多种。
TCP/IP协议里的网关是最常用的,在这里我们所讲的“网关”均指TCP/IP协议下的网关。
??那么网关到底是什么呢?网关实质上是一个网络通向其他网络的IP地址。
比如有网络A和网络B,网络A的IP地址范围为“192.168.1.1~192. 168.1.254”,子网掩码为255.255.255.0;网络B的IP地址范围为“192.168.2.1~192.168.2.254”,子网掩码为255.255.255.0。
在没有路由器的情况下,两个网络之间是不能进行TCP/IP通信的,即使是两个网络连接在同一台交换机(或集线器)上,TCP/IP协议也会根据子网掩码(255.255.255.0)判定两个网络中的主机处在不同的网络里。
而要实现这两个网络之间的通信,则必须通过网关。
如果网络A中的主机发现数据包的目的主机不在本地网络中,就把数据包转发给它自己的网关,再由网关转发给网络B的网关,网络B的网关再转发给网络B的某个主机。
网络B向网络A转发数据包的过程也是如此。
??所以说,只有设置好网关的IP地址,TCP/IP协议才能实现不同网络之间的相互通信。
那么这个IP地址是哪台机器的IP地址呢?网关的IP地址是具有路由功能的设备的IP地址,具有路由功能的设备有路由器、启用了路由协议的服务器(实质上相当于一台路由器)、代理服务器(也相当于一台路由器)。
DNS地址:DNS地址是一个域名服务器地址,它负责把用户的网站地址解析成IP地址。
如果这个服务器出现问题,那么你就可能上不了网了。
我估计世界上没有哪个强人能记住所有自己经常去的网站的IP地址吧。
DNS 全名叫 Domain Name Server,中文俗称“域名服务器”,在说明 DNS Server 之前,可能要先说明什么叫 Domain Name(域名)。
正如上面所讲,在网上辨别一台电脑的方法是利用 IP地址,但是 IP用数字表示,没有特殊的意义,很不好记,因此,我们一般会为网上的电脑取一个有某种含义又容易记忆的名字,这个名字我们就叫它“Domain Name。
例如:对著名的YAHOO!搜索引擎来说,一般使用者在浏览这个网站时,都会输入,很少有人会记住这台Server的 IP 是多少?所以就是YAHOO!站点的 Domain Name。
这正如我们在跟朋友打招呼时,一定是叫他的名字,几乎没有人是叫对方身份证号码的吧!但是由于在 Internet 上真实辨认机器的还是IP,所以当使用者在浏览器中输入Domain Name 后,浏览器必须先到一台有 Domain Name 和 IP 对应信息的主机去查询这台电脑的 IP,而这台被查询的主机,我们称它为 Domain Name Server,简称 DNS,例如:当你输入时,浏览器会将这个名字传送到离它最近的 DNS Server 去做辨认,如果查询到结果,则会传回这台主机的 IP地址,进而跟它发生连接,但如果没有查询到,就会出现类似 DNS NOT FOUND 等告警信息。
所以一旦你的电脑的DNS Server 设置不正确,就好比是路标错了,电脑也就不知道该把信息送到哪里。
由于ISP的拨号服务器一般都有缺省的DNS,所以你可以不用设置DNS,如果你需要指定一台DNS,你一定要了解这台DNS的准确IP(比如福州的163用户的DNS为202.101.98.55)。
DNS设置方法如下:在“控制面板”下打开“网络”里的“TCP/IP的“属性”,在“DNS设置”栏目选择“启用DNS,并将DNS的IP地址添加即可。
IP192.168.X.X一般都是带有路由的IP,网关默认最后1位肯定是1,子网掩码 255.255.255.0简单说C类的IP,子网都可以这样设置
速达3000XP客户端登陆提示:无法连接数据库,请检查SQL服务器是否启动或网络是否正常。但客户端SQL服务器正常运行。客户端电脑系统、数据库重装之后,还是不行。问题是出在速达服务器主机上?怎么解决?
是出现在主机上,首先看主机的网络设置,你在网络邻居里看下主机是否允许被访问。然后再看SQL是否允许访问,访问数量是多少,不会看的话就重新安装,
oracle数据库的后台进程有哪些
DBWR进程:该进程执行将缓冲区写入数据文件,是负责缓冲存储区管理的一个ORACLE后台进程。
当缓冲区中的一缓冲区被修改,它被标志为“弄脏”,DBWR的主要任务是将“弄脏”的缓冲区写入磁盘,使缓冲区保持“干净”。
由于缓冲存储区的缓冲区填入数据库或被用户进程弄脏,未用的缓冲区的数目减少。
当未用的缓冲区下降到很少,以致用户进程要从磁盘读入块到内存存储区时无法找到未用的缓冲区时,DBWR将管理缓冲存储区,使用户进程总可得到未用的缓冲区。
ORACLE采用LRU(LEAST RECENTLY USED)算法(最近最少使用算法)保持内存中的数据块是最近使用的,使I/O最小。
在下列情况预示DBWR 要将弄脏的缓冲区写入磁盘:当一个服务器进程将一缓冲区移入“弄脏”表,该弄脏表达到临界长度时,该服务进程将通知DBWR进行写。
该临界长度是为参数DB-BLOCK-WRITE-BATCH的值的一半。
当一个服务器进程在LRU表中查找DB-BLOCK-MAX-SCAN-CNT缓冲区时,没有查到未用的缓冲区,它停止查找并通知DBWR进行写。
出现超时(每次3秒),DBWR 将通知本身。
当出现检查点时,LGWR将通知DBWR.在前两种情况下,DBWR将弄脏表中的块写入磁盘,每次可写的块数由初始化参数DB-BLOCK- WRITE-BATCH所指定。
如果弄脏表中没有该参数指定块数的缓冲区,DBWR从LUR表中查找另外一个弄脏缓冲区。
如果DBWR在三秒内未活动,则出现超时。
在这种情况下DBWR对LRU表查找指定数目的缓冲区,将所找到任何弄脏缓冲区写入磁盘。
每当出现超时,DBWR查找一个新的缓冲区组。
每次由DBWR查找的缓冲区的数目是为寝化参数DB-BLOCK- WRITE-BATCH的值的二倍。
如果数据库空运转,DBWR最终将全部缓冲区存储区写入磁盘。
在出现检查点时,LGWR指定一修改缓冲区表必须写入到磁盘。
DBWR将指定的缓冲区写入磁盘。
在有些平台上,一个实例可有多个DBWR.在这样的实例中,一些块可写入一磁盘,另一些块可写入其它磁盘。
参数DB-WRITERS控制DBWR进程个数。
LGWR进程:该进程将日志缓冲区写入磁盘上的一个日志文件,它是负责管理日志缓冲区的一个ORACLE后台进程。
LGWR进程将自上次写入磁盘以来的全部日志项输出,LGWR输出:当用户进程提交一事务时写入一个提交记录。
每三秒将日志缓冲区输出。
当日志缓冲区的1/3已满时将日志缓冲区输出。
当DBWR将修改缓冲区写入磁盘时则将日志缓冲区输出。
LGWR进程同步地写入到活动的镜象在线日志文件组。
如果组中一个文件被删除或不可用,LGWR 可继续地写入该组的其它文件。
日志缓冲区是一个循环缓冲区。
当LGWR将日志缓冲区的日志项写入日志文件后,服务器进程可将新的日志项写入到该日志缓冲区。
LGWR 通常写得很快,可确保日志缓冲区总有空间可写入新的日志项。
注意:有时候当需要更多的日志缓冲区时,LWGR在一个事务提交前就将日志项写出,而这些日志项仅当在以后事务提交后才永久化。
ORACLE使用快速提交机制,当用户发出COMMIT语句时,一个COMMIT记录立即放入日志缓冲区,但相应的数据缓冲区改变是被延迟,直到在更有效时才将它们写入数据文件。
当一事务提交时,被赋给一个系统修改号(SCN),它同事务日志项一起记录在日志中。
由于SCN记录在日志中,以致在并行服务器选项配置情况下,恢复操作可以同步。
CKPT进程:该进程在检查点出现时,对全部数据文件的标题进行修改,指示该检查点。
在通常的情况下,该任务由LGWR执行。
然而,如果检查点明显地降低系统性能时,可使CKPT进程运行,将原来由LGWR进程执行的检查点的工作分离出来,由 CKPT进程实现。
对于许多应用情况,CKPT进程是不必要的。
只有当数据库有许多数据文件,LGWR在检查点时明显地降低性能才使CKPT运行。
CKPT进程不将块写入磁盘,该工作是由DBWR完成的。
初始化参数CHECKPOINT-PROCESS控制CKPT进程的使能或使不能。
缺省时为FALSE,即为使不能。
SMON进程:该进程实例启动时执行实例恢复,还负责清理不再使用的临时段。
在具有并行服务器选项的环境下,SMON对有故障CPU或实例进行实例恢复。
SMON进程有规律地被呼醒,检查是否需要,或者其它进程发现需要时可以被调用。
PMON进程:该进程在用户进程出现故障时执行进程恢复,负责清理内存储区和释放该进程所使用的资源。
例:它要重置活动事务表的状态,释放封锁,将该故障的进程的ID从活动进程表中移去。
PMON还周期地检查调度进程(DISPATCHER)和服务器进程的状态,如果已死,则重新启动(不包括有意删除的进程)。
PMON有规律地被呼醒,检查是否需要,或者其它进程发现需要时可以被调用。
RECO进程:该进程是在具有分布式选项时所使用的一个进程,自动地解决在分布式事务中的故障。
一个结点RECO后台进程自动地连接到包含有悬而未决的分布式事务的其它数据库中,RECO自动地解决所有的悬而不决的事务。
任何相应于已处理的悬而不决的事务的行将从每一个数据库的悬挂事务表中删去。
当一数据库服务器的RECO后台进程试图建立同一远程服务器的通信,如果远程服务器是不可用或者网络连接不能建立时,RECO自动地在一个时间间隔之后再次连接。
RECO后台进程仅当在允许分布式事务的系统中出现,而且DISTRIBUTED ?C TRANSACTIONS参数是大于进程:该进程将已填满的在线日志文件拷贝到指定的存储设备。
当日志是为ARCHIVELOG使用方式、并可自动地归档时ARCH进程才存在。
LCKn进程:是在具有并行服务器选件环境下使用,可多至10个进程(LCK0,LCK1……,LCK9),用于实例间的封锁。
Dnnn进程(调度进程):该进程允许用户进程共享有限的服务器进程(SERVER PROCESS)。
没有调度进程时,每个用户进程需要一个专用服务进程(DEDICATEDSERVER PROCESS)。
对于多线索服务器(MULTI-THREADED SERVER)可支持多个用户进程。
如果在系统中具有大量用户,多线索服务器可支持大量用户,尤其在客户_服务器环境中。
在一个数据库实例中可建立多个调度进程。
对每种网络协议至少建立一个调度进程。
数据库管理员根据操作系统中每个进程可连接数目的限制决定启动的调度程序的最优数,在实例运行时可增加或删除调度进程。
多线索服务器需要SQL*NET版本2或更后的版本。
在多线索服务器的配置下,一个网络接收器进程等待客户应用连接请求,并将每一个发送到一个调度进程。
如果不能将客户应用连接到一调度进程时,网络接收器进程将启动一个专用服务器进程。
该网络接收器进程不是ORACLE实例的组成部分,它是处理与ORACLE有关的网络进程的组成部分。
在实例启动时,该网络接收器被打开,为用户连接到ORACLE建立一通信路径,然后每一个调度进程把连接请求的调度进程的地址给予于它的接收器。
当一个用户进程作连接请求时,网络接收器进程分析请求并决定该用户是否可使用一调度进程。
如果是,该网络接收器进程返回该调度进程的地址,之后用户进程直接连接到该调度进程。
有些用户进程不能调度进程通信(如果使用SQL*NET以前的版本的用户),网络接收器进程不能将如此用户连接到一调度进程。
在这种情况下,网络接收器建立一个专用服务器进程,建立一种合适的连接.即主要的有:DBWR,LGWR,SMON 其他后台进程有PMON,CKPT等