欢迎光临
我们一直在努力
广告
广告
广告
广告
广告
广告
广告
广告
广告
广告

服务器CPU核心数量及其影响 (服务器cpu和普通cpu的区别)

文章标题:服务器CPU核心数量及其影响:服务器CPU与普通CPU的区别

一、引言

随着信息技术的飞速发展,服务器和个人电脑在各种应用场景中扮演着重要角色。

作为计算机的核心部件,CPU(中央处理器)的性能直接影响到整体运算效率和处理速度。

本文将探讨服务器CPU的核心数量及其对性能的影响,并比较服务器CPU与普通CPU的区别。

二、服务器CPU核心数量概述

服务器CPU的核心数量是指处理器中集成的处理器核心数量。

与普通的个人电脑CPU相比,服务器CPU通常拥有更多的核心。

这些核心能够并行处理更多的任务,提高数据处理的效率和速度。

多核心服务器CPU的设计目的是处理大量数据请求和高负载任务,确保在高并发环境下保持稳定的性能。

三、服务器CPU核心数量对性能的影响

1. 处理能力:服务器CPU的核心数量越多,其并行处理能力就越强。这意味着服务器可以同时处理更多的请求和任务,从而提高整体的工作效率。

2. 响应速度:在应对大量并发请求时,拥有更多核心的服务器CPU能够更快地响应和处理请求,从而提高服务器的吞吐能力。

3. 稳定性:面对高负载任务,多核心服务器CPU能够更好地分配任务负载,避免单一核心过载,从而保持稳定的性能。

4. 节能效率:随着核心数量的增加,服务器能够更好地实现负载均衡,优化能源使用,提高节能效率。

四、服务器CPU与普通CPU的区别

1. 设计目标:普通CPU主要面向个人用户,满足日常办公、娱乐等需求。而服务器CPU则专注于数据处理和高速运算,满足企业级应用的高并发、高负载需求。

2. 性能参数:服务器CPU通常拥有更高的主频、更大的缓存和更多的核心数,以适应高负载的运算需求。

3. 可靠性:服务器CPU在可靠性方面有更严格的要求。它们需要7×24小时不间断运行,因此具备更高的故障冗余能力和热设计功耗。

4. 价格:由于服务器CPU在性能、可靠性和耐用性方面的更高要求,其价格通常比普通CPU更高。

5. 拓展性:服务器CPU通常支持更多的内存和更大的存储容量,以便处理大规模的数据集。它们还支持更多的I/O接口,以便连接更多的外部设备。

6. 架构:服务器CPU通常采用更先进的指令集和架构,以优化数据处理和并行运算能力。这些特性使得服务器CPU在应对大规模数据处理和高并发请求时表现出更高的性能。

五、结论

服务器CPU的核心数量对性能有着显著的影响。

更多的核心意味着更强的处理能力、更快的响应速度、更高的稳定性和更好的节能效率。

与普通CPU相比,服务器CPU在设计目标、性能参数、可靠性、价格、拓展性和架构等方面存在显著差异。

这些差异使得服务器CPU能够在高并发、高负载的企业级应用中发挥出色的性能。

在选择CPU时,用户需要根据实际需求和预算进行权衡。

对于个人用户来说,普通CPU足以满足日常需求;而对于需要处理大量数据的企业级用户来说,服务器CPU则是更明智的选择。

随着云计算和大数据技术的不断发展,拥有更多核心的服务器CPU将在未来的数据中心扮演更加重要的角色。


i3、i5、i7只有核心数区别吗?

同代的i3、i5、i7处理器,主要区别确实是核心数量,除了核心数量以外,区别还有不同等级的处理器缓存容量不同、是否开启超线程、是否支持超频、集成的内存控制器及核心显卡的差异、处理器TDP功耗限制这几个方面,这些都会影响处理器的性能高低。

二级缓存 什么意思

二级缓存又叫L2 CACHE,它是处理器内部的一些缓冲存储器,其作用跟内存一样。

它是怎么出现的呢? 要上溯到上个世纪80年代,由于处理器的运行速度越来越快,慢慢地,处理器需要从内存中读取数据的速度需求就越来越高了。

然而内存的速度提升速度却很缓慢,而能高速读写数据的内存价格又非常高昂,不能大量采用。

从性能价格比的角度出发,英特尔等处理器设计生产公司想到一个办法,就是用少量的高速内存和大量的低速内存结合使用,共同为处理器提供数据。

这样就兼顾了性能和使用成本的最优。

而那些高速的内存因为是处于CPU和内存之间的位置,又是临时存放数据的地方,所以就叫做缓冲存储器了,简称“缓存”。

它的作用就像仓库中临时堆放货物的地方一样,货物从运输车辆上放下时临时堆放在缓存区中,然后再搬到内部存储区中长时间存放。

货物在这段区域中存放的时间很短,就是一个临时货场。

最初缓存只有一级,后来处理器速度又提升了,一级缓存不够用了,于是就添加了二级缓存。

二级缓存是比一级缓存速度更慢,容量更大的内存,主要就是做一级缓存和内存之间数据临时交换的地方用。

现在,为了适应速度更快的处理器P4EE,已经出现了三级缓存了,它的容量更大,速度相对二级缓存也要慢一些,但是比内存可快多了。

缓存的出现使得CPU处理器的运行效率得到了大幅度的提升,这个区域中存放的都是CPU频繁要使用的数据,所以缓存越大处理器效率就越高,同时由于缓存的物理结构比内存复杂很多,所以其成本也很高。

大量使用二级缓存带来的结果是处理器运行效率的提升和成本价格的大幅度不等比提升。

举个例子,服务器上用的至强处理器和普通的P4处理器其内核基本上是一样的,就是二级缓存不同。

至强的二级缓存是2MB~16MB,P4的二级缓存是512KB,于是最便宜的至强也比最贵的P4贵,原因就在二级缓存不同。

即L2 Cache。

由于L1级高速缓存容量的限制,为了再次提高CPU的运算速度,在CPU外部放置一高速存储器,即二级缓存。

工作主频比较灵活,可与CPU同频,也可不同。

CPU在读取数据时,先在L1中寻找,再从L2寻找,然后是内存,在后是外存储器。

所以L2对系统的影响也不容忽视。

CPU缓存(Cache Memory)位于CPU与内存之间的临时存储器,它的容量比内存小但交换速度快。

在缓存中的数据是内存中的一小部分,但这一小部分是短时间内CPU即将访问的,当CPU调用大量数据时,就可避开内存直接从缓存中调用,从而加快读取速度。

由此可见,在CPU中加入缓存是一种高效的解决方案,这样整个内存储器(缓存+内存)就变成了既有缓存的高速度,又有内存的大容量的存储系统了。

缓存对CPU的性能影响很大,主要是因为CPU的数据交换顺序和CPU与缓存间的带宽引起的。

缓存的工作原理是当CPU要读取一个数据时,首先从缓存中查找,如果找到就立即读取并送给CPU处理;如果没有找到,就用相对慢的速度从内存中读取并送给CPU处理,同时把这个数据所在的数据块调入缓存中,可以使得以后对整块数据的读取都从缓存中进行,不必再调用内存。

正是这样的读取机制使CPU读取缓存的命中率非常高(大多数CPU可达90%左右),也就是说CPU下一次要读取的数据90%都在缓存中,只有大约10%需要从内存读取。

这大大节省了CPU直接读取内存的时间,也使CPU读取数据时基本无需等待。

总的来说,CPU读取数据的顺序是先缓存后内存。

最早先的CPU缓存是个整体的,而且容量很低,英特尔公司从Pentium时代开始把缓存进行了分类。

当时集成在CPU内核中的缓存已不足以满足CPU的需求,而制造工艺上的限制又不能大幅度提高缓存的容量。

因此出现了集成在与CPU同一块电路板上或主板上的缓存,此时就把 CPU内核集成的缓存称为一级缓存,而外部的称为二级缓存。

一级缓存中还分数据缓存(Data Cache,D-Cache)和指令缓存(Instruction Cache,I-Cache)。

二者分别用来存放数据和执行这些数据的指令,而且两者可以同时被CPU访问,减少了争用Cache所造成的冲突,提高了处理器效能。

英特尔公司在推出Pentium 4处理器时,用新增的一种一级追踪缓存替代指令缓存,容量为12KμOps,表示能存储12K条微指令。

随着CPU制造工艺的发展,二级缓存也能轻易的集成在CPU内核中,容量也在逐年提升。

现在再用集成在CPU内部与否来定义一、二级缓存,已不确切。

而且随着二级缓存被集成入CPU内核中,以往二级缓存与CPU大差距分频的情况也被改变,此时其以相同于主频的速度工作,可以为CPU提供更高的传输速度。

二级缓存是CPU性能表现的关键之一,在CPU核心不变化的情况下,增加二级缓存容量能使性能大幅度提高。

而同一核心的CPU高低端之分往往也是在二级缓存上有差异,由此可见二级缓存对于CPU的重要性。

CPU在缓存中找到有用的数据被称为命中,当缓存中没有CPU所需的数据时(这时称为未命中),CPU才访问内存。

从理论上讲,在一颗拥有二级缓存的CPU中,读取一级缓存的命中率为80%。

也就是说CPU一级缓存中找到的有用数据占数据总量的80%,剩下的20%从二级缓存中读取。

由于不能准确预测将要执行的数据,读取二级缓存的命中率也在80%左右(从二级缓存读到有用的数据占总数据的16%)。

那么还有的数据就不得不从内存调用,但这已经是一个相当小的比例了。

目前的较高端的CPU中,还会带有三级缓存,它是为读取二级缓存后未命中的数据设计的—种缓存,在拥有三级缓存的CPU中,只有约5%的数据需要从内存中调用,这进一步提高了CPU的效率。

为了保证CPU访问时有较高的命中率,缓存中的内容应该按一定的算法替换。

一种较常用的算法是“最近最少使用算法”(LRU算法),它是将最近一段时间内最少被访问过的行淘汰出局。

因此需要为每行设置一个计数器,LRU算法是把命中行的计数器清零,其他各行计数器加1。

当需要替换时淘汰行计数器计数值最大的数据行出局。

这是一种高效、科学的算法,其计数器清零过程可以把一些频繁调用后再不需要的数据淘汰出缓存,提高缓存的利用率。

CPU产品中,一级缓存的容量基本在4KB到64KB之间,二级缓存的容量则分为128KB、256KB、512KB、1MB、2MB等。

一级缓存容量各产品之间相差不大,而二级缓存容量则是提高CPU性能的关键。

二级缓存容量的提升是由CPU制造工艺所决定的,容量增大必然导致CPU内部晶体管数的增加,要在有限的CPU面积上集成更大的缓存,对制造工艺的要求也就越高缓存(Cache)大小是CPU的重要指标之一,其结构与大小对CPU速度的影响非常大。

简单地讲,缓存就是用来存储一些常用或即将用到的数据或指令,当需要这些数据或指令的时候直接从缓存中读取,这样比到内存甚至硬盘中读取要快得多,能够大幅度提升CPU的处理速度。

所谓处理器缓存,通常指的是二级高速缓存,或外部高速缓存。

即高速缓冲存储器,是位于CPU和主存储器DRAM(Dynamic RAM)之间的规模较小的但速度很高的存储器,通常由SRAM(静态随机存储器)组成。

用来存放那些被CPU频繁使用的数据,以便使CPU不必依赖于速度较慢的DRAM(动态随机存储器)。

L2高速缓存一直都属于速度极快而价格也相当昂贵的一类内存,称为SRAM(静态RAM),SRAM(Static RAM)是静态存储器的英文缩写。

由于SRAM采用了与制作CPU相同的半导体工艺,因此与动态存储器DRAM比较,SRAM的存取速度快,但体积较大,价格很高。

处理器缓存的基本思想是用少量的SRAM作为CPU与DRAM存储系统之间的缓冲区,即Cache系统。

以及更高档微处理器的一个显著特点是处理器芯片内集成了SRAM作为Cache,由于这些Cache装在芯片内,因此称为片内Cache。

486芯片内Cache的容量通常为8K。

高档芯片如Pentium为16KB,Power PC可达32KB。

Pentium微处理器进一步改进片内Cache,采用数据和双通道Cache技术,相对而言,片内Cache的容量不大,但是非常灵活、方便,极大地提高了微处理器的性能。

片内Cache也称为一级Cache。

由于486,586等高档处理器的时钟频率很高,一旦出现一级Cache未命中的情况,性能将明显恶化。

在这种情况下采用的办法是在处理器芯片之外再加Cache,称为二级Cache。

二级Cache实际上是CPU和主存之间的真正缓冲。

由于系统板上的响应时间远低于CPU的速度,如果没有二级Cache就不可能达到486,586等高档处理器的理想速度。

二级Cache的容量通常应比一级Cache大一个数量级以上。

在系统设置中,常要求用户确定二级Cache是否安装及尺寸大小等。

二级Cache的大小一般为128KB、256KB或512KB。

在486以上档次的微机中,普遍采用256KB或512KB同步Cache。

所谓同步是指Cache和CPU采用了相同的时钟周期,以相同的速度同步工作。

相对于异步Cache,性能可提高30%以上。

目前,PC及其服务器系统的发展趋势之一是CPU主频越做越高,系统架构越做越先进,而主存DRAM的结构和存取时间改进较慢。

因此,缓存(Cache)技术愈显重要,在PC系统中Cache越做越大。

广大用户已把Cache做为评价和选购PC系统的一个重要指标。

什么是CPU的主频、外频、倍频

CPU主要的性能指标有:○主频 主频也叫时钟频率,单位是MHz,用来表示CPU的运算速度。

CPU的主频=外频×倍频系数。

很多人认为主频就决定着CPU的运行速度,这不仅是个片面的,而且对于服务器来讲,这个认识也出现了偏差。

至今,没有一条确定的公式能够实现主频和实际的运算速度两者之间的数值关系,即使是两大处理器厂家Intel和AMD,在这点上也存在着很大的争议,我们从Intel的产品的发展趋势,可以看出Intel很注重加强自身主频的发展。

像其他的处理器厂家,有人曾经拿过一块1G的全美达来做比较,它的运行效率相当于2G的Intel处理器。

所以,CPU的主频与CPU实际的运算能力是没有直接关系的,主频表示在CPU内数字脉冲信号震荡的速度。

在Intel的处理器产品中,我们也可以看到这样的例子:1 GHz Itanium芯片能够表现得差不多跟2.66 GHz Xeon/Opteron一样快,或是1.5 GHz Itanium 2大约跟4 GHz Xeon/Opteron一样快。

CPU的运算速度还要看CPU的流水线的各方面的性能指标。

当然,主频和实际的运算速度是有关的,只能说主频仅仅是CPU性能表现的一个方面,而不代表CPU的整体性能。

○外频 外频是CPU的基准频率,单位也是MHz。

CPU的外频决定着整块主板的运行速度。

说白了,在台式机中,我们所说的超频,都是超CPU的外频(当然一般情况下,CPU的倍频都是被锁住的)相信这点是很好理解的。

但对于服务器CPU来讲,超频是绝对不允许的。

前面说到CPU决定着主板的运行速度,两者是同步运行的,如果把服务器CPU超频了,改变了外频,会产生异步运行,(台式机很多主板都支持异步运行)这样会造成整个服务器系统的不稳定。

目前的绝大部分电脑系统中外频也是内存与主板之间的同步运行的速度,在这种方式下,可以理解为CPU的外频直接与内存相连通,实现两者间的同步运行状态。

外频与前端总线(FSB)频率很容易被混为一谈,下面的前端总线介绍我们谈谈两者的区别。

○前端总线(FSB)频率 前端总线(FSB)频率(即总线频率)是直接影响CPU与内存直接数据交换速度。

有一条公式可以计算,即数据带宽=(总线频率×数据位宽)/8,数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率。

比方,现在的支持64位的至强Nocona,前端总线是800MHz,按照公式,它的数据传输最大带宽是6.4GB/秒。

外频与前端总线(FSB)频率的区别:前端总线的速度指的是数据传输的速度,外频是CPU与主板之间同步运行的速度。

也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一千万次;而100MHz前端总线指的是每秒钟CPU可接受的数据传输量是100MHz×64bit÷8bit/Byte=800MB/s。

其实现在“HyperTransport”构架的出现,让这种实际意义上的前端总线(FSB)频率发生了变化。

之前我们知道IA-32架构必须有三大重要的构件:内存控制器Hub (MCH) ,I/O控制器Hub和PCI Hub,像Intel很典型的芯片组 Intel 7501、Intel7505芯片组,为双至强处理器量身定做的,它们所包含的MCH为CPU提供了频率为533MHz的前端总线,配合DDR内存,前端总线带宽可达到4.3GB/秒。

但随着处理器性能不断提高同时给系统架构带来了很多问题。

而“HyperTransport”构架不但解决了问题,而且更有效地提高了总线带宽,比方AMD Opteron处理器,灵活的HyperTransport I/O总线体系结构让它整合了内存控制器,使处理器不通过系统总线传给芯片组而直接和内存交换数据。

这样的话,前端总线(FSB)频率在AMD Opteron处理器就不知道从何谈起了。

○CPU的位和字长 位:在数字电路和电脑技术中采用二进制,代码只有“0”和“1”,其中无论是 “0”或是“1”在CPU中都是 一“位”。

字长:电脑技术中对CPU在单位时间内(同一时间)能一次处理的二进制数的位数叫字长。

所以能处理字长为8位数据的CPU通常就叫8位的CPU。

同理32位的CPU就能在单位时间内处理字长为32位的二进制数据。

字节和字长的区别:由于常用的英文字符用8位二进制就可以表示,所以通常就将8位称为一个字节。

字长的长度是不固定的,对于不同的CPU、字长的长度也不一样。

8位的CPU一次只能处理一个字节,而32位的CPU一次就能处理4个字节,同理字长为64位的CPU一次可以处理8个字节。

○倍频系数 倍频系数是指CPU主频与外频之间的相对比例关系。

在相同的外频下,倍频越高CPU的频率也越高。

但实际上,在相同外频的前提下,高倍频的CPU本身意义并不大。

这是因为CPU与系统之间数据传输速度是有限的,一味追求高倍频而得到高主频的CPU就会出现明显的“瓶颈”效应—CPU从系统中得到数据的极限速度不能够满足CPU运算的速度。

一般除了工程样版的Intel的CPU都是锁了倍频的,而AMD之前都没有锁。

○缓存 缓存大小也是CPU的重要指标之一,而且缓存的结构和大小对CPU速度的影响非常大,CPU内缓存的运行频率极高,一般是和处理器同频运作,工作效率远远大于系统内存和硬盘。

实际工作时,CPU往往需要重复读取同样的数据块,而缓存容量的增大,可以大幅度提升CPU内部读取数据的命中率,而不用再到内存或者硬盘上寻找,以此提高系统性能。

但是由于CPU芯片面积和成本的因素来考虑,缓存都很小。

L1 Cache(一级缓存)是CPU第一层高速缓存,分为数据缓存和指令缓存。

内置的L1高速缓存的容量和结构对CPU的性能影响较大,不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大。

一般服务器CPU的L1缓存的容量通常在32—256KB。

L2 Cache(二级缓存)是CPU的第二层高速缓存,分内部和外部两种芯片。

内部的芯片二级缓存运行速度与主频相同,而外部的二级缓存则只有主频的一半。

L2高速缓存容量也会影响CPU的性能,原则是越大越好,现在家庭用CPU容量最大的是512KB,而服务器和工作站上用CPU的L2高速缓存更高达256KB-1MB,有的高达2MB或者3MB。

L3 Cache(三级缓存),分为两种,早期的是外置,现在的都是内置的。

而它的实际作用即是,L3缓存的应用可以进一步降低内存延迟,同时提升大数据量计算时处理器的性能。

降低内存延迟和提升大数据量计算能力对游戏都很有帮助。

而在服务器领域增加L3缓存在性能方面仍然有显著的提升。

比方具有较大L3缓存的配置利用物理内存会更有效,故它比较慢的磁盘I/O子系统可以处理更多的数据请求。

具有较大L3缓存的处理器提供更有效的文件系统缓存行为及较短消息和处理器队列长度。

赞(0)
未经允许不得转载:优乐评测网 » 服务器CPU核心数量及其影响 (服务器cpu和普通cpu的区别)

优乐评测网 找服务器 更专业 更方便 更快捷!

专注IDC行业资源共享发布,给大家带来方便快捷的资源查找平台!

联系我们